首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
The pre-Cretaceous basin evolution of the Feda Graben area in the vicinity of the Norwegian-Danish basin has been reconstructed utilizing geological and structural interpretation. The analysis reveals that the basin was faulted at its borders prior to the salt deposition in the Late Permian. Salt movement was initiated in Late Triassic and thick Triassic and Lower Jurassic pods were deposited in the graben area due to this movement. Salt pillows were developing along the Feda Graben bordering faults until Middle Jurassic when the pillows were collapsed. Salt diapirs within the study area preferentially occupy the crest of the Feda Graben and their occurrence is controlled by the underlying faulted topography. The diapirs were fed by salt from the central and southern parts of the basin and were developed by different processes i.e. upbuilding, downbuilding. Various raft structures were developed in the graben area hanging wall while some uplift occurred in the footwall during Mesozoic rifting. The Feda Graben area experienced rifting from Late Jurassic to Early Cretaceous. The most pronounced subsidence episode related with this rifting in the Feda Graben area took place along the eastern bounding Gert Fault. The Mesozoic rifting event is marked by a major unconformity on the seismic sections throughout the study area. Furthermore, the region experienced basin inversion in Late Cretaceous. The effects of inversion are more pronounced in the western part and along the Gert Fault. The inversion phenomenon can be properly understood only when considered together with the geometry of the Late Jurassic half-graben. Due to some inconsistencies in the previously proposed models for the development of the Feda Graben, a new conceptual model has been constructed.  相似文献   

2.
Owing to the strategic significance of national oil and gas resources, their exploration and production must be prioritized in China. Oil and gas resources are closely related to deep crustal structures, and Moho characteristics influence oil and gas distribution. Therefore, it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations. The Moho depth in the study area can be inverted using the Moho depth control information, the Moho gravity anomaly, and the variable density distribution calculated by the infinite plate. Based on these results, the influences of Moho characteristics on petroleum basins were studied. We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large, and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin. The oil-bearing mechanism of the Moho basin is further discussed herein. The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields. The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface, further developing into a fault or depression basin that receives deposits. The organic matter can become oil and natural gas under suitable chemical and structural conditions. Under the action of groundwater or other dynamic forces, oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone, and oil and gas fields are formed under the condition of good caprock. The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.  相似文献   

3.
东海陆架盆地是位于中国东部华南大陆边缘的一个中、新生代叠合盆地,具有较大油气潜力。目前东海陆架盆地油气的发现均来自于新生界,对中生代残留地层的各方面特征认识不足:在空间上通常集中于特定构造单元,且基本位于盆地西部;在时间上主要涉及白垩纪和侏罗纪,且多是定性或半定量的研究。本文在前人研究的基础上,收集、整理了研究区目前最新、最全的反射地震资料和钻井数据,从钻遇中生界井的标定出发,以地震资料的层序划分和解释为基础,进行残留地层的研究,空间上统一盆地东、西两大坳陷带,时间上统揽白垩纪、侏罗纪以及前侏罗纪三个时期。结果表明,东海陆架盆地中生代残留地层遭受了后期严重的剥蚀改造,总体呈现东厚西薄、南厚北薄的特征,残留地层范围随时间不断东扩。对比各时期残留地层平面展布特征,揭示了东海陆架盆地的演变过程:三叠纪时期盆地原型为被动大陆边缘坳陷型盆地,早、中侏罗世时期为活动大陆边缘弧前盆地,晚侏罗世—晚白垩世时期为大陆边缘弧后伸展盆地;与此相对应,古太平洋板块俯冲肇始于晚三叠世—早、中侏罗世时期,板块后撤始于晚侏罗世。东海陆架盆地在中生代的东侧边界位于钓鱼岛隆褶带的东侧。  相似文献   

4.
黄骅坳陷南部滩海区中生界构造与演化   总被引:7,自引:1,他引:6  
渤海湾盆地区中生界构造演化与样式始终不明朗,中生代该区处于整个华北克拉通东部高原的核心部位。其构造演化研究对深入理解这个高原从形成至垮塌的过程至关重要。同时,中生界也是近年来中国东部深部油气勘探的主要目标。黄骅坳陷南部滩海区不仅是大港探区中生界潜山油气的重要勘探区,而且处于渤海湾盆地中新生代构造格局转换部位,具有重要研究价值。利用大量地震剖面,系统进行了中生界残存展布规律的分析,进一步划分了该区构造单元,探讨了该区中生界构造演化过程。特别是,以羊二庄断层为界,研究区可以分为两个构造区,东南区构造相对简单;西北区构造复杂,既继承了印支期东西向构造格局,又经历燕山早、中期走滑挤压和燕山晚期及新生代的伸展走滑,还产生了强烈的滑断构造。羊二庄断层是在印支期构造的基础上发展起来的一组剪切断裂,在燕山中期经历了挤压走滑,在燕山晚期和新生代经历右行伸展运动而形成的呈NE向的复杂断层系。可见羊二庄断层的演化控制了该区中生界的构造格局和演化。  相似文献   

5.
南海北部潮汕坳陷海区海底地震仪调查实验   总被引:6,自引:2,他引:4  
潮汕坳陷被认为是一个具有良好油气前景的中生代残留沉积坳陷,其中生代地层也被新近的钻井证实。为研究其盆地深部构造,“十五”863课题跨越该区进行了深地质调查。调查采用5台国产海底地震仪记录深部地震资料。处理结果显示本次调查清楚地记录到了来自地壳内部和Moho面的震相,这是国产海底地震仪在南海地区的首次成功实践。海底地震仪记录揭示沿测线的地壳在南海形成过程中减薄程度较低,中生代地层速度较高,代表致密的岩石,这些因素可能不利于油气的储集,需要在勘探中避开。  相似文献   

6.
南沙海域礼乐盆地中生界油气资源潜力   总被引:4,自引:0,他引:4  
位于南沙东部海域的礼乐盆地是一大型的中、新生代叠置盆地,其特有的地质背景及巨厚的中生代地层显示了其与南沙海域其他新生代沉积盆地的差异。盆地内发育的厚度超过4 000 m的中生代海相地层,主要包括了上侏罗统—下白垩统的滨—浅海相含煤碎屑岩或半深海相页岩、上三叠统—下侏罗统三角洲—浅海相砂泥岩和中三叠统深海硅质页岩等3套地层,展示出盆地具有良好的油气生成潜力。而早期位于华南陆缘、现今位于南沙东部海域的礼乐盆地中生界,完全具备了形成油气藏的基本石油地质条件,具有较为良好的油气资源潜力,其中生界油气资源勘探具有非常重要的意义,将成为我国海域油气勘探的一个重要新领域。  相似文献   

7.
通过选取南黄海盆地东北凹典型地震剖面,开展精细的构造解释,系统梳理了东北凹构造样式特征。采用平衡剖面恢复技术和伸缩率计算方法,恢复了东北凹各时期的地质演化剖面,分析了东北凹不同构造演化阶段的伸缩率变化特征。研究表明,南黄海盆地东北凹主要发育伸展构造、走滑构造(负花状)和反转构造等多种构造组合样式,经历了晚侏罗世的仪征运动和渐新世末的三垛运动,相应地在中—上侏罗统和渐新统沉积时期,东北凹处于明显的收缩阶段,伴随发育TK40和T20不整合界面。同时,本文结合区域应力场特征,探讨了南黄海盆地东北凹的构造演化历程:以两次构造运动为界,划分为3个构造演化阶段(晚三叠世—侏罗纪的初始断陷阶段、白垩纪—渐新世的裂陷-反转阶段、新近纪—第四纪的区域沉降阶段)。南黄海盆地东北凹伸缩率的时空变化及构造演化过程,是对“晚中生代以来,古太平洋板块相对欧亚板块俯冲汇聚速率和方向的改变”的局部响应。  相似文献   

8.
The Sørkapp Basin (NW Barents Shelf) contains a comprehensive sedimentary succession that provides insight into regional tectonics and depositional development of the shelf from the Devonian to the Cretaceous. With its location east of the mid-Atlantic spreading ridge and south of Svalbard, the Basin serves as an important link between the offshore and onshore realms.This study subdivides this sparsely studied basin into six main seismic units (three Paleozoic and three Mesozoic). A metamorphic basement together with assumed Devonian sedimentary deposits form the foundation for a chiefly Carboniferous basin. The Basin forms a syncline with infill showing limited fault-influence. Overlying the early infill are Late Carboniferous deposits which show less lateral variation in thickness but also active growth on the few faults showing significant displacement. The overlying platform deposits of the latest Carboniferous and Permian show a change in depositional geometry, with onlapping deposits towards the east probably resulting from uplift of the Stappen High and regional flooding. Subsequent, particularly Late, Triassic sedimentation shows a more distinctly progradational pattern with a dominantly southeastern source for sediments. During this shallow shelf-filling stage, the Sørkapp Basin is sheltered by the Gardarbanken High, blocking the Early Triassic clinoform development. The High was transgressed in the Middle Triassic and the platform-edge progressively approached the present Svalbard coastline.The youngest Mesozoic unit forms a separate saucer-shaped depocenter west of the Sørkapp Basin, where deposits are truncated by the seafloor in a mid-basin position and across the Gardarbanken High. The depositional pattern for this succession correlates with the outcrop pattern of the Adventdalen Group implying a post Middle Jurassic to Cretaceous age. The Sørkapp Basin has been referred to as a Cretaceous feature based in this depocenter. However, the foundations are much older and the Cretaceous depression is located west of the deeper basin. Accordingly, we propose the informal term Sørkapp Depression for the Cretaceous basin.  相似文献   

9.
The South Yellow Sea basin is filled with Mesozoic–Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic–Palaeozoic marine sediments. Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail, leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments. In this study, we present seismic tomography data from ocean bottom seismogra...  相似文献   

10.
南黄海盆地古潜山分类及构造特征   总被引:1,自引:0,他引:1  
南黄海是下扬子的主体,奠基于晋宁期变质基底之上,构造演化历经南华纪—早、中三叠世海相地层发育期、晚白垩世—古近纪箕状断陷发育期和新近纪—第四纪坳陷发育期,为一典型地台-断陷-坳陷多层结构的复合盆地。盆地历经多次构造运动改造,古潜山发育,类型多样。在总结前人对古潜山研究的基础上,结合南黄海新近采集的二维地震剖面,对该地区古潜山类型进行了系统划分,并对典型古潜山的构造特征及生储盖匹配关系进行了初步描述。根据成因划分为剥蚀型潜山、拉张型潜山、挤压型潜山和复合型潜山四大类,每一类又可根据形态划分出剥蚀残丘型潜山、拉张翘倾断块型潜山、拉张断阶型潜山、拉张断垒型潜山、挤压褶皱型潜山、拱张褶皱型潜山和褶皱—断块复合型潜山等类型。南黄海盆地古潜山的发育具有分带性,按盆地中潜山的构造位置,分为凸起潜山带、陡坡潜山带、洼陷潜山带和缓坡潜山带,每一构造带发育了不同类型潜山。研究表明南黄海古生界和中生界古潜山数量众多,规模较大,是南黄海地区实现油气突破的一种重要油气藏类型。  相似文献   

11.
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.  相似文献   

12.
南海北部陆缘区中特提斯构造演化研究   总被引:9,自引:0,他引:9  
通过对南海及周边地区特提斯构造遗迹的综合分析,并与东亚、东南亚地区特提斯构造对比,认为南海北部陆缘区存在可以进行东、西向对比的中特提斯构造。相应的中特提斯洋因北巴拉望-礼乐-南沙地块与华南大陆边缘在白垩纪中期的碰撞而关闭。南海北部陆缘区中特提斯构造向西可以与加里曼丹的Metratus缝合线和苏门答腊的Woyla缝合线对比,向东经台湾海峡、琉球群岛与日本佐用带对比。南海北部陆缘区中特提斯构造的确认对正确解释南海北部陆缘区地壳结构在东西向和南北向的差异、重新认识华南陆域内地质构造演化以及对南海北部陆缘区油气资源勘探均具重要意义。  相似文献   

13.
黄骅坳陷中区中生代构造演化   总被引:2,自引:0,他引:2  
渤海湾盆地地区中生代构造演化与样式始终不明朗,特别是对燕山期变形始终存在争议,故选择黄骅坳陷中区中生界作为重点剖析对象,通过大量地震剖面的解释和平衡剖面技术复原古构造演化的研究,并结合前人研究成果和区域构造背景,提出黄骅坳陷中区中生代演化过程可大致分为4个阶段:印支晚期东西向宽缓褶皱及后期逆冲构造变形期、燕山早期挤压走滑构造变形期、燕山中期继承性挤压与右旋张扭构造变形期、燕山晚期—喜山期区域性伸展构造变形期。  相似文献   

14.
Interpretation of well-calibrated three-dimensional seismic volumes, sedimentological analysis and electrical well-log correlations from the Ninian and Alwyn North fields challenge the long-held view that Mid-Late Jurassic extensional faults in the East Shetland Basin represent a simple reactivation of older (Triassic) fault systems. Restoration for the effects of the younger, predominantly eastward-dipping, Mid-Late Jurassic structures clearly demonstrates that Triassic precursors had a steep, westerly dip. In contrast to the eastern flank of the Viking Graben (e.g. Troll and Oseberg areas), where the west-dipping Triassic structures are reutilised in the Mid-Late Jurassic, those of the East Shetland Basin have largely been dissected and rotated during the later event. Those west-dipping faults that did see later movement appear to have simply acted as minor antithetic structures to the throughgoing east-dipping ones.The Triassic normal fault patterns actively controlled sediment thicknesses and facies distribution within the Lunde and Teist Formations in the basin. Use of seismic stratigraphic surfaces, calibrated by biostratigraphy and chemostratigraphic markers, provides strong evidence that the Triassic depocentres are spatially offset from their Mid-Late Jurassic counterparts. The combination of structural, stratigraphic and sedimentary effects reveal the existence of an emergent deeper Triassic play opportunity in footwall locations to the Mid-Late Jurassic normal faults, which has the potential to extend the life of what is otherwise mature acreage.  相似文献   

15.
The Cenozoic East African Rift System (EARS) is an exceptional example of active continental extension, providing opportunities for furthering our understanding of hydrocarbon plays within rifts. It is divided into structurally distinct western and eastern branches. The western branch comprises deep rift basins separated by transfer zones, commonly localised onto pre-existing structures, offering good regional scale hydrocarbon traps. At a basin-scale, local discrete inherited structures might also play an important role on fault localisation and hydrocarbon distribution. Here, we consider the evolution of the Central basin of the Malawi Rift, in particular the influence of pre-existing structural fabrics.Integrating basin-scale multichannel 2D, and high resolution seismic datasets we constrain the border, Mlowe-Nkhata, fault system (MNF) to the west of the basin and smaller Mbamba fault (MF) to the east and document their evolution. Intra basin structures define a series of horsts, which initiated as convergent transfers, along the basin axis. The horsts are offset along a NE–SW striking transfer fault parallel to and along strike of the onshore Karoo (Permo-Triassic) Ruhuhu graben. Discrete pre-existing structures probably determined its location and, oriented obliquely to the extension orientation it accommodated predominantly strike-slip deformation, with more slowly accrued dip-slip.To the north of this transfer fault, the overall basin architecture is asymmetric, thickening to the west throughout; while to the south, an initially symmetric graben architecture became increasingly asymmetric in sediment distribution as strain localised onto the western MNF. The presence of the axial horst increasingly focussed sediment supply to the west. As the transfer fault increased its displacement, so this axial supply was interrupted, effectively starving the south-east while ponding sediments between the western horst margin and the transfer fault. This asymmetric bathymetry and partitioned sedimentation continues to the present-day, overprinting the early basin symmetry and configuration. Sediments deposited earlier become increasingly dissected and fault juxtapositions changed at a small (10–100 m) scale. The observed influence of basin-scale transfer faults on sediment dispersal and fault compartmentalization due to pre-existing structures oblique to the extension orientation is relevant to analogous exploration settings.  相似文献   

16.
The Larsen Basin, on the northwest margin of the Weddell Sea, formed as a Mesozoic ensialic basin during Gondwana breakup. Deposition was either in half grabens on the extending Weddell Sea margin, or in a restricted back-arc basin. At the northern end of this basin 5–6 km of sedimentary rock crop out on James Ross Island, exposing elements of a large potential hydrocarbon system. Aeromagnetic and outcrop data suggest that the basin structure inferred from James Ross Island can be recognised at least as far south as 70°S.Upper Jurassic anoxic marine strata, deposited prior to the main phase of arc development, form a rich potential source (T.O.C. up to 3.5%) with both marine and terrestrial kerogens. Arc-derived volcaniclastic sediments of Barremian — Oligocene age form a regressive megasequence. Basal strata represent slope apron and rudaceous submarine fan deposits proximal to the margin; fan conglomerates form lenticular bodies hundreds of metres thick and tens of kilometres across, enveloped in slope-apron mudstones. Late Cretaceous fault reactivation and uplift led to dramatic shallowing of the basin, with deposition of shelf facies. Although there are many potentially attractive reservoir targets, there may be problems of pore occlusion due to the abundant labile volcanic grains. However, there is evidence of more quartzose sandstone towards the top of the section, and, inferentially, toward the basin centre.In the Larsen Basin, there is moderate potential for oil generated from Upper Jurassic source rocks and reservoired in Cretaceous and Tertiary sandstones and conglomerates, in large stratigraphic or structural traps caused by partial basin inversion during deposition.  相似文献   

17.
The interpretation of 2D and 3D seismic reflection data complemented with gravity data allows the crustal architecture of the deepwater west Niger Delta passive margin to be defined. The data show that the area is underlain by oceanic crust that is characterised by a thickness of 5–7 km and by internal reflectivity consisting of both dipping and sub-horizontal reflectors. Some of the dipping reflections can be traced up to the top of the basement where they offset it across a series of minor to major thrust faults. Other internal reflections are attributed to extensional shear zones and possibly due to intrusions in the lower crust. The Moho can be correlated as a discrete reflection over >70% of the study area. It is generally smooth, but localised relief of up to 1 km is observed. The southeastern part of the study area is dominated by a zone of SW–NE striking basement thrusts.  相似文献   

18.
构造样式为盆内各类构造组合的几何形态表达,反映了盆地所处应力场性质变化与构造演化过程。本文基于近5年来针对东海陆架盆地所取得的地震资料解释成果,并综合盆地构造演化特征及其地球动力学背景,对盆地内中生界构造样式进行了系统的分类与总结,详细划分为5类构造样式:伸展构造样式、挤压构造样式、走滑构造样式、反转构造样式和底辟构造样式,并进一步细化为12种构造组合。同时,对东海陆架盆地内西部坳陷、中部低隆起、东部坳陷3个构造单元内的中生界构造样式发育情况分别进行了总结,各类构造样式自西至东具有各异的展布特征。综合盆内中生界构造样式几何学特点与展布特征可见,由于伊佐奈歧板块的俯冲、碰撞作用,区内处于挤压构造环境,进而形成了挤压背斜、断背斜、正反转等构造组合;大洋板块的后退翻卷及板块碰撞、俯冲的远程效应下,区内构造环境以伸展作用为主,形成了一系列NNE向裂陷盆地,发育了丰富的伸展构造组合;走滑-拉分构造的发育较好体现了构造环境的转变,地震剖面上见有花状断裂发育;岩浆底辟构造多发育于拉张环境下,与断裂展布息息相关,多沿NE-NNE向断裂展布。此外,新生代多期构造运动是影响中生界构造样式发育展布的重要因素。  相似文献   

19.
莱州湾凹陷位于渤海南部海域,为中生界基底之上发育的新生代半地堑.郯庐断裂带分东西两支穿过莱州湾凹陷东部,在新生代盖层中表现出渤海最复杂最典型的为NNE向的右旋走滑断裂特征.其中东支断裂在渐新世以后活动强烈,发育多条NNE向走滑断层及NE向伴生断层组成的复杂断裂带.走滑断裂带内断层展布符合右旋单剪作用下的脆性走滑剪切模式,地震方差切片存在右旋运动拖拽断裂证据.通过对主断裂活动期次分析表明,研究区主要有三期大的构造活动,同时形成了三期构造反转.应力分布的局域性导致了形变特征的差异性,产生了褶皱、挤压反转、掀斜断块、花状构造等典型的构造类型.研究区首次利用三维地震资料对本区构造特征进行了分析,研究认为走滑活动形成了良好的构造背景、优越的油源及运移等成藏条件,具有较大的油气勘探潜力.  相似文献   

20.
Magnetic zoning and seismic structure of the South China Sea ocean basin   总被引:2,自引:0,他引:2  
We made a systematic investigation on major structures and tectonic units in the South China Sea basin based on a large magnetic and seismic data set. For enhanced magnetic data interpretation, we carried out various data reduction procedures, including upward continuation, reduction to the pole, 3D analytic signal and power spectrum analyses, and magnetic depth estimation. Magnetic data suggest that the South China Sea basin can be divided into five magnetic zones, each with a unique magnetic pattern. Zone A corresponds roughly to the area between Taiwan Island and a relict transform fault, zone B is roughly a circular feature between the relict transform fault and the northwest sub-basin, and zones C, D, and E are the northwest sub-basin, the east sub-basin, and the southwest sub-basin, respectively. This complexity in basement magnetization suggests that the South China Sea evolved from multiple stages of opening under different tectonic settings. Magnetic reduction also fosters improved interpretation on continental margin structures, such as Mesozoic and Cenozoic sedimentary basins and the offshore south China magnetic anomaly. We also present, for the first time, interpretations of three new 2D reflection seismic traverses, which are of ~2,000 km in total length and across all five magnetic zones. Integration of magnetic and seismic data enables us to gain a better 3D mapping on the basin structures. It is shown that the transition from the southwest sub-basin to the east sub-basin is characterized by a major ridge formed probably along a pre-existing fracture zone, and by a group of primarily west-dipping faults forming an exact magnetic boundary between zones D and E. The northwest sub-basin has the deepest basement among the three main sub-basins (i.e., the northwest sub-basin, the southwest sub-basin, and the east sub-basin). Our seismic data also reveal a strongly faulted continent–ocean transition zone of about 100 km wide, which may become wider and dominated with magmatism or transit to an oceanic crust further to the northeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号