首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work discusses the synsedimentary structural control affecting the turbidites of the Marnoso-arenacea Formation (MAF) deposited in an elongate, NW-stretched foredeep basin formed in front of the growing Northern Apennines orogenic wedge. The stratigraphic succession of the MAF (about 4000 m thick) records the progressive closure of the Apennine foredeep basin due to the NE propagation of thrust fronts. In this setting, Langhian to Serravallian turbidites are overlain by Tortonian mixed turbidite deposits, i.e. sandstone-rich low-efficiency turbidites. The high-resolution stratigraphic framework of basin-plain turbidites has made it possible to identify five informal stratigraphic units (I, II, III, IV, V) mainly on the basis of the structural control highlighted by: 1) the presence of topographic highs and relative depocentres detected through a progressive flattening approach, and 2) the presence of thrust-related mass-transport complexes and the progressive appearance and disappearance of five bed types (Types 1, 2, 3, 4, 5) considered important to understand the interaction between flow efficiency and basin morphology. By contrast, the upper part of the MAF succession (Tortonian in age) is formed by more sandstone-rich systems characterized by beds whose origin is likely to depend, at least in part, upon flow decelerations related to topographic confinement due to the progressive closure of the foredeep. The vertical and lateral distribution of these types of beds is, therefore, useful for the reconstruction of the morphological evolution of structurally controlled basins; in the MAF example, this is mainly due to the progressive narrowing of the foredeep caused by the propagation of the main thrust fronts toward the foreland.  相似文献   

2.
The Oligocene-Miocene is a key interval that was characterized by a cooling trend associated with a progressive decrease of atmospheric CO2 concentrations that ends in the Present days.In the Central Mediterranean area, during this interval, three main carbonate platform domains developed in the foreland zone of the Apennines: the Latium-Abruzzi-Campana and Apulia domain in the central and south-eastern sectors of the chain and the Hyblea and Pelagian carbonate platforms in the south and south-western sectors. This work analyzes the impact and interplay of global and regional factors controlling the development of different carbonate factories and facies associations over the Chattian and the early Messinian time interval. Three well-studied examples of the central Mediterranean will be used: the Chattian ramp of Malta, the Latium-Abruzzi ramp, and the Bolognano ramp within the northern portion of the Apulian carbonate platform (outcropping on Majella Mountain).The Malta ramp represents the reference model for the heterozoan Oligo-Miocene carbonate factory, since it developed far from terrigenous input, in persistent oligotrophic conditions, and within a tropical climate. In contrast, the evolution of the central Apennine ramps is strictly related to the geodynamic evolution of the Apennines and simultaneously to global oceanographic changes.The Chattian Apennine ramps are affected by a basin conformation that favored the development of dominant currents and related dune fields. Successively, these ramps were exposed to strong Aquitanian volcanism that induced a shift towards an aphotic-dominated carbonate factory. Since the Burdigalian the development of the Apennines has affected the evolution of the investigated ramps through the eastward migration of foredeep systems and related nutrient input. This influence becomes more evident between the Tortonian and Messinian, during which reef-rimmed platforms developed in the rest of the Mediterranean while red algae still dominated in the Apennine ramps. Amongst the global events, the C-cycle perturbation, occurring between the late Burdigalian and Serravallian (Monterey event), leaves a clear sign on the two Apennine ramps.  相似文献   

3.
The Bajo Segura basin (eastern Betic Cordillera) has one of the most complete late Miocene–early Pliocene marine records of the western Mediterranean. An updated planktonic foraminifer zonal scheme based on recent astronomically tuned biozones is presented for this interval, documenting a complete succession of biostratigraphic markers, from biozone MMi9 (earliest Tortonian) to MPl3 (latest early Pliocene), of likely significance for regional-scale correlation throughout the Mediterranean. The findings reveal a series of intrazonal events (some unreported until now in the Mediterranean Neogene basin), including the particularly interesting two influxes of the Globorotalia miotumida group during the Tortonian. These biostratigraphic findings are the basis for a framework of the major allostratigraphic units in the basin based on planktonic foraminifer event-stratigraphy: synthems Tortonian I, Tortonian II, Tortonian-Messinian I, Messinian II, and Pliocene. In addition, the timing of the main tectono-sedimentary and palaeogeographic events throughout the basin's evolution has been further constrained. Our results suggest that, at least in the Bajo Segura basin, the late-Messinian barren interval (non-distinctive zone) can be considered an ecobiostratigraphic zone (cenozone) characterized by dwarf fauna of planktonic foraminifera. Consequently, the Bajo Segura composite section can be regarded as a biostratigraphic reference section for Neogene basins in the Betic Cordillera and hence also in the Western Mediterranean.  相似文献   

4.
Whilst the relationship between stratigraphic development and carbonate cementation within siliciclastic succession has been documented through a number case studies, these studies have been generally restricted to observations upon individual sequences and/or limited sub-surface data. In this paper, long-term (5 million years), large-scale (>200 km) stratigraphic controls on carbonate cementation patterns are documented from the Upper Cretaceous Panther Tongue Member, Blackhawk Formation and Castlegate Sandstone exposed in the Book Cliffs in Utah and Colorado, USA. Together, these comprise eight progradational wedges of sandstones, which interfinger with the Mancos Shale, deposited within the Western Interior Seaway foreland basin. Petrographic analyses of ferroan dolomite cement bodies within these sandstone wedges show that the ferroan dolomite cements are all early, relative to burial diagenesis within the host sandstones. Stable isotope analyses indicates that a significant meteoric component was present in precipitating fluids and this is consistent with the observation that cements, are always present down-dip of sequence boundaries and/or leached whitecaps beneath coals. In addition, the lateral distribution of cement bodies increases consistently up-succession from less than 5 km in extent in the older sequences, to 30 km in extent in the youngest sequences. These changes in distribution are in response to the increased progradation and increased and more aerially extensive sequence-boundary development in younger sequences. The implications of these data are that whilst localized spatial patterns of diagenesis, and in particular carbonate cementation, are predictable and controlled by the nature and presence of individual stratal surfaces, systematic diagenetic alteration patterns are also present at the sedimentary basin scale and controlled by the nature of larger-scale stratigraphic development and basin evolution. This evolution may be driven by eustatic shifts, or through tectonic or climatic driven base-level shifts. These observations allow an improved insight into the basin-scale processes that control the macroscopic diagenetic properties of sedimentary successions and sub-surface hydrocarbon reservoirs.  相似文献   

5.
The Northern Adriatic Sea is a shallow and very flat shelf area located between the northern Apennines, the southern Alps and the Dinarides; its present day physiography is the result of the filling of a relatively deep Quaternary foredeep basin, developed due to the northeastward migration of the Apennine chain. Multichannel seismic profiles and well data have allowed documenting the stratigraphic architecture, the depositional systems and the physiographic evolution of the Northern Adriatic sea since early Pliocene time. In particular, three main depositional sequences bounded by regional unconformities were recognized. The Zanclean Sequence 1 documents first the drowning of late Messinian incised valleys and then the southward progradation of a shelf-slope system, which is inferred to be related to a tectonic phase of the Apenninic front. The Piacenzian-Gelasian Sequence 2 records a relatively rapid transgressive episode followed by minor southward progradation; the top of the sequence is associated with a major late Gelasian drowning event, linked to the NE-ward migration of the Apennine foredeep. The Calabrian to upper Pleistocene Sequence 3 testifies the infilling of accommodation previously created by the late Gelasian drowning event, and it initially accumulated in deep-water settings and then in shallow-water to continental settings. The upper part of Sequence 3, consisting of the paleo-Po deltaic system, is composed of seven high-frequency sequences inferred to record late Quaternary glacio-eustatic changes. These high-frequency sequences document the stepwise filling of the remaining accommodation, resulting in the development of the modern shelf.  相似文献   

6.
Tectonic evolution of the internal sector of the Central Apennines, Italy   总被引:2,自引:0,他引:2  
A wide sector of the internal portion of the Central Apennines, which comprises the southern Lepini Mtns up to the northern Simbruini Mtns has been investigated through detailed field mapping and integrated with structural analyses. A few small productive oil fields and a large number of hydrocarbon seeps and oil impregnations are located in this sector. This area offers good opportunities for testing the use of structural fieldwork methodologies in order to highlight oil migrating paths, from Triassic source rocks, and prospecting chances for oil field exploitation.The main stages of the structural evolution of the area took place after deposition of the foredeep sediments (Frosinone Fm.), i.e. after Late Tortonian, under a stress field characterised by a NE–SW trending σ1, which was responsible for the early emplacement of major thrust faults present in the area. The Messinian-Early Pliocene thrust-top basin deposits allowed the reconstruction of an in-sequence evolution of the thrust system. The development of out-of-sequence thrusting post-dates these structures leading to a further strong shortening phase in the area during the Pliocene. This phase is characterised by a roughly NNE–SSW trending σ1. Some peculiar tectonic features evidenced by thrust faults with younger-over-older relationships and an inversion of the original stacking of thrust sheets developed during this phase.Successively, a block-faulting tectonic, mainly with NE–SW extension stress field, occurred and dismembered the compressive tectonic edifice.Later on up to the Middle Pleistocene, N–S to NNE–SSW trending dextral strike-slip faults also acted in the area. Associated to the strike-slip tectonics are local volcanic centres as well as necks, whose compositions show a mantle origin, thus indicating deep seating and a possible lithospheric significance of these structures.In the light of this study, the reduced extension of the productive oil area as well as the spotting of oil seeps, may indicate that the migration conditions are not tied to well defined structures but that likely the cross-cutting points among structures facilitate the conditions for an upwards rising of oil. These conditions in particular are achieved at least in two cases: (1) where the Late Triassic source rocks do not have great depth due to normal or reverse faults, or (2) at a major depth when encountered by transcurrent-oblique roughly N–S trending faults—in both cases oil can easily migrate along the damage zone associated to the fault plane.  相似文献   

7.
《Marine Geology》1999,153(1-4):147-160
Magnetostratigraphic and biostratigraphic results are presented from Neogene deposits in the Taza–Guercif Basin, located at the southern margin of the Rifian Corridor in Morocco. This corridor was the main marine passageway which connected the Mediterranean with the Atlantic during Messinian times. Correlation of the biostratigraphy and polarity sequence of the Taza–Guercif composite section to the astronomical time scale, allows an accurate dating of three subsequent events in the Rifian Corridor. (1) The oldest marine sediments marking the opening of the Rifian Corridor were deposited at 8 Ma. At this age, a deep (600 m) marine basin developed in the Taza–Guercif area, marked by deposition of precession-controlled turbidite–marl cycles. (2) Paleodepth reconstructions indicate that a rapid (5 m/ka) shallowing of the marine corridor took place at the Tortonian/Messinian boundary, at an age of 7.2 Ma. This shallowing phase is primarily related to active tectonics, although a small glacio-eustatic sea level lowering also took place. (3) The Taza–Guercif Basin was emergent at an age of 6.0 Ma and, subsequently, continental sedimentation continued well into the Early Pliocene. We suggest that shallowing and restricting the marine passageway through the Rifian Corridor actually initiated the Messinian salinity crisis, well before the deposition of the Messinian evaporites in the Mediterranean.  相似文献   

8.
Mid-Miocene (Langhian; ∼15.4 Ma) sapropels formed within the easternmost Mediterranean basin, now uplifted in northern Cyprus. These sapropels represent the oldest known sapropels in a predominantly marl succession. Six well-developed sapropels were studied. Strontium isotope dating of twelve samples gave a preferred age of ∼15.4 Ma (Langhian); i.e. during the final phases of the Middle Miocene Climatic Optimum (MCO). The age of the best-preserved nannofossil assemblage (Langhian) is close to the strontium ages. The Langhian strontium ages are preferred over an alternative early Serravallian age for less well-preserved nannofossil assemblages. Total organic carbon contents in the sapropels reach maximum values of 3.9 wt.%. Relative to the host marls, the sapropels show enrichments in terrigenous-derived minerals and related major and trace elements. Sedimentological evidence indicates that the terrigenous sediments were eroded from the northern borderlands of the deep-water basin under warm, humid conditions. High fresh-water run-off from surrounding landmasses is likely to have promoted a low-salinity lid to the eastern Mediterranean deep-water basin. This, in turn, would have restricted deep-water ventilation and promoted widespread anoxia. Exceptionally high concentrations of chalcophile elements (e.g. Cu, Ni and Zn) are consistent with anoxic conditions. Abundant nutrient-rich fresh-water input is also likely to have stimulated siliceous productivity (although any siliceous microfossils did not survive diagenesis). A significant role for diagenesis in sapropel formation is indicated by the mobilisation of Ba from sapropels to marl directly beneath. Orbitally induced dry–wet oscillation, the mechanism invoked to explain the Pliocene to Holocene sapropels, apparently was already in place during the latest stages of the MCO when the Langhian sapropels accumulated. These sapropels accumulated immediately after the Middle Miocene closure of the Southern Neotethys when the Eastern Mediterranean Sea apparently became more sensitive to orbital cyclicity. The development of a semi-enclosed deep-water basin was, therefore, a prerequisite for sapropel formation.  相似文献   

9.
In the Chelif basin, the geochemical characterization reveals that the Upper Cretaceous and Messinian shales have a high generation potential. The former exhibits fair to good TOC values ranging from 0.5 to 1.2% with a max. of 7%. The Messinian series show TOC values comprised between 0.5 and 2.3% and a high hydrogen index (HI) with values up to 566 mg HC/g TOC. Based on petroleum geochemistry (CPLC and CPGC) technics, the oil-to source correlation shows that the oil of the Tliouanet field display the same signature as extracts from the Upper Cretaceous source rocks (Cenomanian to Campanian). In contrast, oil from the Ain Zeft field contains oleanane, and could thus have been sourced by the Messinian black shale or older Cenozoic series. Two petroleum systems are distinguished: Cretaceous (source rock) – middle to upper Miocene (reservoirs) and Messinian (source rock)/Messinian (reservoirs). Overall, the distribution of Cretaceous-sourced oil in the south, directly connected with the surface trace of the main border fault of the Neogene pull-apart basin, rather suggests a dismigration from deeper reservoirs located in the parautochthonous subthrust units or in the underthrust foreland, rather than from the Tellian allochthon itself (the latter being mainly made up of tectonic mélange at the base, reworking blocks and slivers of Upper Cretaceous black shale and Lower Miocene clastics). Conversely, the occurrence of Cenozoic-sourced oils in the north suggests that the Neogene depocenters of the Chelif thrust-top pull-apart basin reached locally the oil window, and therefore account for a local oil kitchen zone. In spite of their limited extension, allochthonous Upper cretaceous Tellian formations still conceal potential source rock layers, particularly around the Dahra Mountains and the Tliouanet field. Additionally they are also recognized by the W11 well in the western part of the basin (Tahamda). The results of the thermal modelling of the same well shows that there is generation and migration of oil from this source rock level even at recent times (since 8 Ma), coevally with the Plio-Quaternary traps formation. Therefore, there is a possibility of an in-situ oil migration and accumulation, even from Tellian Cretaceous units, to the recent structures, like in the Sedra structure. However, the oil remigration from deep early accumulations into the Miocene reservoirs is the most favourable case in terms of hydrocarbon potential of the Chelif basin.  相似文献   

10.
The Yinggehai and Qiongdongnan basins in the northwestern South China Sea preserve a large volume of Cenozoic sediments. However, their sources are still remain controversial and need a further research. This paper uses discriminant diagrams and bivariate plots of major, trace and rare earth elements, combined with heavy mineral data and detrital zircon U-Pb ages to determine the provenance, source area weathering and tectonic setting of the Upper Miocene to Pliocene sediments in the Yinggehai and Qiongdongnan basins, offshore South China Sea. The sandstone samples used in this study are characterized by four features: (i) The studied sandstones are first-cycle deposits, no recycling processes are recorded in these sediments, and there is a low degree of weathering conditions in the source areas. (ii) The sandstones from the DF fan, LD fan and Central Canyon System may have a similar source, being derived from an old upper continental crust mainly composed of felsic igneous source rocks. (iii) Detrital zircon U-Pb ages suggest that Central Vietnam is likely to be the dominant source of the DF fan, LD fan and Central Canyon System. (iv) The tectonic setting of the sandstones in the DF fan, LD fan and Central Canyon System belongs to the continental island arc (CIA) or the active continental margin (ACM) fields.  相似文献   

11.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

12.
The oblique and diachronous collision of the Apennine-Maghrebian Chain with the Apulian (in the north-east) and Pelagian (in the south) continental forelands, has determined the characteristic arcuate structure of this orogen. The effects of Plio-Pleistocene deformation of the Calabrian Arc have been analysed on the basis of available reflection seismic profiles and using local time-structural maps reconstructed along the main structures. During this period, internal sectors of the Tertiary chain migrated forward on the oceanic Ionian foreland, and were cut by important strike-slip systems. These last have an orientation approximately coincident with that of the migration of the front, allowing differential movement of the different sectors of the arc, towards the weakly buoyant Ionian oceanic domain. The dataset suggests a clear connection between the development of the strike-slip systems cutting the chain and the direction of tectonic transport, towards the East during Late Messinian/Early Pliocene time, to the ESE during Late Pliocene/Early Pleistocene time, finally to the SSE during the Middle/Late Pleistocene to Present, showing a clockwise rotation in well defined stages during the kinematic evolution of the chain. The origin of the Strait of Messina during the different phases is also interpreted in the context of the analysed regional tectonic setting.  相似文献   

13.
High-resolution physical stratigraphy and detailed facies analysis have been carried out in the foredeep turbidites of Annot Sandstone in the Peïra Cava basin (French Maritime Alps) in order to characterize the relationship between facies and basin morphology. Detailed correlation patterns are evidence of a distinction between a southern bypass-dominated region, coincident with a channel-lobe transition and a north-eastern depositional zone, represented by sheet-like basin plain. These depositional elements are characterized by three main groups of beds related to the downcurrent evolution of bipartite flows. These facies groups are: 1) pebbly coarse-grained massive sandstones with rip-up mudstone clasts and impact mudstone breccias (Type I and II beds) deposited by basal dense flows, 2) coarse-grained massive sandstone overlain by tractive structures (Type III and IV beds) indicating the bypass of overlying turbulent flows and 3) massive medium-grained and fine-grained laminated sandstones related to the deposition of high and low density turbidity currents (Type V and VI beds). Ponding and reflection processes, affecting the upper turbulent flows, can characterize all type beds, but especially the beds of the third group. As described in other confined basins of the northern Apennines (Italy), the lateral and vertical distribution of these type of beds, together with other important sedimentary characteristics, - such as the sandstone/mudstone ratio, bed thicknesses, amalgamation surfaces and paleocurrents - reveal that the deposition of the Annot Sandstone in the Peïra Cava basin was controlled by an asymmetric basin with a steep western margin. This margin favored, on the one hand, basal dense flow decelerations and impacts, as well as bypass and deflection of the upper turbulent flows towards the north east.  相似文献   

14.
通过对东海陆架盆地形成的动力学机制研究,分析了动力学机制控制下的盆地南部构造演化特征,提出构造演化对油气成藏的四个控制作用:(1)构造运动控制了盆地演化阶段与凹陷结构;(2)构造运动控制了盆地沉降中心迁移与地层分布;(3)构造运动决定了油气成藏关键时期和油气分带的差异性;(4)构造运动控制了油气聚集与分布。构造运动是盆地演化及油气成藏的主导因素,盆地构造演化结合油气地质综合研究是东海陆架盆地南部油气勘探工作的重点。  相似文献   

15.
本文从南太平洋地区区域构造演化出发,开展盆地类型划分和石油地质条件分析,了解不同类型盆地的油气成藏特征,并分析油气分布规律和资源潜力,以期对未来油气勘探开发国际合作选区提供借鉴。研究表明:(1)南太平洋地区经历了亨特-鲍恩造山运动、澳大利亚板块与南极洲板块分离、塔斯曼海扩张及珊瑚海扩张、巴布亚新几内亚地区的洋壳俯冲和弧-陆碰撞作用,最终形成了澳大利亚东部南缘和海域及新西兰地区以裂谷盆地为主、澳大利亚东部内陆以克拉通盆地为主的包括晚二叠世-三叠纪前陆盆地、古近纪-新近纪前陆盆地、古近纪-现今弧前盆地和弧后盆地6种盆地类型;(2)澳大利亚内陆南缘和东部海域以及新西兰地区裂谷盆地分布广泛,裂谷盆地油气最为富集,但内陆和海域有所差异,内陆南缘裂谷盆地油气资源丰富且石油与天然气的比值约为2:1,而东部海域裂谷盆地因油气成藏条件差,尚无油气发现;(3)根据盆地的剩余可采储量和远景资源量对南太平洋地区的资源潜力进行分析,认为白垩纪-古近纪裂谷盆地和古近纪-新近纪前陆盆地油气资源潜力最大,并优选出吉普斯兰(Gippsland)、塔拉纳基(Taranaki)和巴布亚(Papua)3个有利盆地。  相似文献   

16.
The Cariaco basin, located ∼40 km off the central part of the coast of Venezuela, is the largest (∼4000 km2) and bathymetrically deepest (1400 m BSL) Neogene fault-bounded basin within the right-lateral strike-slip plate boundary zone that separates the Caribbean and South American plates. Using subsurface geophysical data, we test two previously proposed tectonic models for the age, distribution and nature of east-west-striking, strike-slip faults, and basin-forming mechanism for the two main depocenters of the Cariaco basin. The earliest interpretation for the opening of the twin Cariaco depocenters by Schubert (1982) proposes that both depocenters formed synchronously by extension along transverse (north-south) normal faults at a ∼30-km-wide rhomboidally-shaped pull-apart basin between the right-lateral, east-west-striking, and parallel San Sebastian and El Pilar fault zones. A later model by Ben-Avraham and Zoback (1992) proposes that both depocenters formed synchronously by a process of ”transform-normal parallel extension”, or rifting in a north-south direction orthogonal to the east-west-striking and parallel strike-slip faults.We use more than 4000 km of 2D single- and multi-channel seismic data tied to 11 wells to map 5 tectono-stratigraphic sequences and to produce a series of structural and isopach maps showing how the faults that controlled both Cariaco depocenters evolved from Paleogene to the present. Comparison of fault and isopach maps for dated horizons from Paleogene to late Neogene in age show three main phases in basin development: 1) from middle Miocene to Pliocene, the West Cariaco basin formed as a rhomboidally-shaped pull-apart at a 30-km-wide stepover between the northern branch of the San Sebastian fault and the El Pilar fault zone; 2) during the early Pliocene, a new strike-slip fault transected the West Cariaco basin (southern branch of the San Sebastian fault) and caused extension to cease; and 3) during the early Pliocene to recent, a “lazy-Z” shaped pull-apart formed along the curving connection between the southern branch of the San Sebastian and El Pilar fault zones.  相似文献   

17.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   

18.
The ˜4000 m thick and ∼20 Myr deep-water sedimentary fill of the Upper Cretaceous Magallanes Basin was deposited in three major phases, each with contrasting stratigraphic architecture: (1) the oldest deep-water formation (Punta Barrosa Formation) comprises tabular to slightly lenticular packages of interbedded sandy turbidites, slurry-flow deposits, and siltstone that are interpreted to record lobe deposition in an unconfined to weakly ponded setting; (2) the overlying, 2500 m thick and shale-dominated Cerro Toro Formation includes a succession of stacked conglomeratic and sandstone channel-fill deposits with associated finer-grained overbank deposits interpreted to record deposition in a foredeep-axial channel-levee system; (3) the final phase of deep-water sedimentation is characterized by sandstone-rich successions of highly variable thickness and cross-sectional geometry and mudstone-rich mass transport deposits (MTDs) that are interpreted to record deposition at the base-of-slope and lower slope segments of a prograding delta-fed slope system. The deep-water formations are capped by shallow-marine and deltaic deposits of the Dorotea Formation.These architectural changes are associated with the combined influences of tectonically driven changes and intrinsic evolution, including: (1) the variability of amount and type of source material, (2) variations in basin shape through time, and (3) evolution of the fill as a function of prograding systems filling the deep-water accommodation. While the expression of these controls in the stratigraphic architecture of other deep-water successions might differ in detail, the controls themselves are common to all deep-water basins. Information about source material and basin shape is contained within the detrital record and, when integrated and analyzed within the context of stratigraphic patterns, attains a more robust linkage of processes to products than stratigraphic characterization alone.  相似文献   

19.
The Plio-Pleistocene succession of the Venice area represents part of the infill of a foreland region located between three mountain chains: the Northern Apennines, the Southern Alps and the Dinarides. This structural setting favored the development of a complex stratigraphic architecture of the succession, mostly due to the conveying of sediments from the Southern Alps to the north and the Northern Apennines to the south, in particular since the activation of strong subsidence related to the NE-ward migration of the Apennine foredeep in the early Pleistocene. Accordingly, the studied succession is composed of five third-order sequences mostly controlled by tectonics, the most recent of which display complex patterns due to the interfingering of sedimentary bodies showing contrasting directions of progradation and pinch-out. Despite this, the sequence stratigraphic method still can be applied in the present context, allowing to recognize diagnostic stratal architectures and reconstruct the relative sea-level history of the region. Moreover, the recognized peculiar stratigraphic architecture of the basin fill may serve as an analogue that needs to be taken into account to predict the distribution of porous coarse-grained sedimentary units in similar contexts, aiding for a profitable exploration and production of reservoirs and source/sealing rocks.  相似文献   

20.
琼东南盆地物源和沉积环境变化的重矿物证据   总被引:5,自引:0,他引:5  
基于11口钻井岩心样品的重矿物数据,结合古生物学、元素地球化学和地震资料,对琼东南盆地的物源及沉积环境演变进行了分析.结果表明,盆地基底沉积以陆相沉积为主,自渐新世起,盆地逐渐接受海侵,大致经历了海陆过渡→滨浅海→浅海→半深海的沉积环境演变过程,水深总体呈逐渐增大的趋势且在同一时期南部区域水深整体上大于北部.随着沉积环境的变化,各地层(崖城组至莺歌海组)物源呈现出多源性特征,经历了原地→近源→远源的演变过程.在渐新世早期,物源以近源玄武质火山碎屑和邻区陆源碎屑为主,之后演变为远源的陆壳碎屑,物源区包括北部海南岛、南部永乐隆起、东北部神狐隆起、西部红河、西南部中南半岛乃至更广的区域.海南岛物源自早渐新世便开始发育,至中中新世成为盆地最主要的物源,并持续至现今;永乐隆起和神狐隆起物源在晚渐新世至早中新世期间最为发育,于中中新世逐渐消退;红河物源于晚中新世大规模加入,为中央峡谷的主要沉积物源,影响至上新世结束;中南半岛莺西物源自上新世发育,影响至更新世时期.此外,自生组分对盆地(尤其是南部区域)的沉积贡献也不容忽视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号