首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 62 毫秒
1.
新疆山地-绿洲-荒漠系统及其气候特征   总被引:10,自引:3,他引:10  
在位于中国西北内陆干旱区的新疆,发育着大量的山地-绿洲-荒漠系统,山地系统是干旱区水资源的形成区,也是重要的矿质营养库和生物种质资源库,绿洲系统是生产力相对较高的区域和人类赖以生存和发展的中心,而荒漠系统则是干旱区面积广阔和环境相对恶劣的区域。地貌类型与气候特征决定耦合类型的基础和框架,水文特征决定耦合类型的空间格局,植被类型反应耦合类型的外貌。通过对新疆山地、绿洲、荒漠三个子系统结构与功能进行了分析,并结合新疆近40年气候变化的特点和规律,来探讨中亚干旱区山地-绿洲-荒漠系统的特征。  相似文献   

2.
念青唐古拉山南坡气温分布及其垂直梯度   总被引:4,自引:0,他引:4  
利用架设在念青唐古拉山南坡9个海拔高度(4 300~5 500 m)的自动气象站1 a(2006年8月1日至2007年7月31日)的实测数据,对山坡1.5 m高度的近地面气温随海拔梯度和时间的分布进行了分析。表明念青南坡4 300~4 950 m冷季(10~4月)存在逆温。利用高山各观测高度的温度与当雄气象站气温具有良好相关,推算出多年平均情况下念青唐古拉山南坡各观测高度的年平均气温和各月平均气温。并由此推测念青唐古拉山南坡海拔5 100 m以上存在高山多年冻土,此多年冻土下界高度比《中国冻土》指出的高度高约200 m。  相似文献   

3.
俞洁辉  刘新圣  罗天祥  张林 《地理学报》2012,67(9):1246-1254
本研究基于西藏念青唐古拉山北麓高山嵩草草甸海拔分布上限(5125 m) 地下10 cm和30 cm土壤温度和水分连续3 年(2008-2010 年) 的监测数据, 分析了草甸海拔分布上限土壤温度和未冻水含量的季节动态特征。结果表明:1) 土壤在4 月中下旬解冻, 10 月中下旬冻结;6-8月份土壤温度日振幅最大, 10 cm和30 cm分别为3.8℃和1.4℃;2) 土壤未冻水含量回升(下降) 在解冻(冻结) 开始后, 5-10 月份未冻水含量较高, 其中10 cm和30 cm 分别为2%~6%和15%~20%;3) 基于10 cm土壤温度推算的本地区高山嵩草草甸海拔分布上限的生长季在6 月初至8 月末或9 月初, 持续时间为80-87 天, 生长季平均土壤温度和含水量分别为6.78±0.73℃和4.14±0.91%, 生长季期间日最低温度集中在3~7℃之间(占90%以上天数);4) 与较低海拔处(4980 m) 相比, 高山嵩草草甸海拔分布上限处10 cm土壤温度和未冻水含量均明显偏低, 生长季8月份出现日最低温< 5℃的天数也明显增加。  相似文献   

4.
高寒植被类型及其植物生产力的监测   总被引:31,自引:1,他引:30  
监测并分析了高寒草甸二种不同植被类型的生态环境条件、植物种类组成、生物量变化规律及其差异。研究表明:距离相近且海拔高度基本相同的矮蒿草草甸和金露梅灌丛草甸二种群落内部,由于受地形部位影响,虽然降水基本相同,但地表受热及蒸发量不同,土壤湿度存在明显差异。受上述环境条件特别是受土壤温湿度条件的限制,二种群落内的植物种类不同,地下、地上生物量的变化也不同,一般在山地阴坡主要分布着以金露梅灌丛为优势种外,多以线叶蒿草、小蒿草、羊茅、及其它杂草类为伴生种的金露梅灌丛草甸植被类型,而主要分布于滩地的矮蒿草草甸多以垂穗披碱草等植物为伴生种的湿中性植被类型,属典型的高寒草甸植被类型。生物量监测结果的比较分析表明,群落的地上生物量为:矮蒿草草甸 > 金露梅灌丛草甸;地下生物量随植被类型的不同,其峰值与谷值出现时间不一致。年内地下净生产量为:金露梅灌丛草甸 > 矮蒿草草甸。地下生产量周转值为:矮蒿草草甸 > 金露梅灌丛草甸。  相似文献   

5.
天山北坡高山林线分布的生态地理特征   总被引:1,自引:0,他引:1  
综合利用多源遥感影像和实地勘察资料识别天山北坡高山林线分布格局,结合区域气象数据和土壤理化性质,分析天山北坡林线分布的生态地理特征。结果表明:①天山北坡林线分布高度大约在2 600~2 850 m,从西向东林线分布高度呈上升趋势,奇台至巴里坤段林线高度上升最为显著;伊犁河谷段与玛纳斯段林线垂直宽度较宽。②影响天山北坡林线分布高度的关键气候因子为生长季温度(如年生物学温度3.35 ℃,最热月均温10.49 ℃,生长季均温8.26 ℃),特别是年生物学温度,能较好的指示天山北坡高山林线分布位置,且各气候指标均在全国均值范围之内,而影响巴音布鲁克地区森林发育的主要原因为冬季低温干旱。③伊犁林线过渡带和玛纳斯林线过渡带有机质、全氮及全磷的含量最高;酸碱性大致以阜康林线为界,向西呈酸性,向东呈碱性;土壤营养物质主要分布于表层(0~10 cm),深层(30~80 cm)含量低且变化不显著,具有明显的“表聚现象”;下层土壤pH值从西向东逐渐由弱酸性向弱碱性过渡;电导率空间变异性较强,各层变化特征不显著。  相似文献   

6.
拉萨河流域高山水热分布观测结果分析   总被引:4,自引:1,他引:4  
利用架设在念青唐古拉山南坡9个海拔高度(4300~5500m)的自动气象站一年(2006年8月1日-2007年7月31日)的实测数据,对山坡1.5m高度的气温和季风期(6-9月)降水随海拔梯度和时间的变化进行了分析.表明4300~4950m存在一个逆温带,逆温时间自10月至翌年4月.年逆温频率为11.5%(42天).4300~5500m年平均气温直减率为0.61℃/100m;念青唐古拉山南坡季风期各月最大降水带都在海拔5100m.最大降水高度以下,山坡降水量递增率为4~7mm/100m,最大降水高度以上,降水递减率数值上为降水递增率的1.6~2.3倍.7月和8月降水量占季风期总降水量比例大于6月和9月.降水月内分配山坡上部总体较山坡下部均匀.降水主要发生在4:00-10:00以外的时间段,而大一中雨(3~14mm/h)主要发生在18:00-22:00.山坡强降水段相对集中在4650~5100m海拔高度.  相似文献   

7.
施氮对高寒草甸草原植物群落和土壤养分的影响   总被引:2,自引:1,他引:2  
于2013-2014年在青藏高原东缘测定了不同梯度施氮后植物群落特征、牧草营养和土壤质量的变化,并分析了施氮后的经济效益。结果表明:(1)施氮显著增加了各功能群植物的高度和禾本科功能群植物盖度,而对莎草科和豆科植物盖度无显著影响;施氮显著增加了禾本科、莎草科、豆科和植物群落生物量,降低了杂类草盖度和生物量,其中施肥量为30.86~38.58 g·m-2时效果最为显著。(2)施氮显著增加了0~20 cm土层根系生物量;施氮当年显著增加了根冠比,施氮第2年根冠比无显著变化。(3)施氮不同程度降低了高寒草甸草原植物群落多样性,其中,施肥量在30.86~38.58 g·m-2时最低。(4)施氮不同程度地提高了禾本科、莎草科和杂类草植物的粗蛋白含量,降低了各功能群植物纤维含量;施氮不同程度提高了高寒草甸草原土壤养分和有机碳含量,其中在施肥量为30.86~38.58 g·m-2时最高。(5)施氮当年和第二年净收益均在施肥量为30.86 g·m-2时最大,分别为1 860元·hm-2和878元·hm-2。施氮缓解了青藏高原东缘高寒草甸草原植物生长的营养限制,提高了可食牧草产量,30.86~38.58 g·m-2可作为该区最佳施氮水平。  相似文献   

8.
结合土壤养分的IN-SITU野外定位研究,以IN-SITU原状取土管和环刀比较研究获取的数据,对IN-SITU原状取土管和环刀测定值进行相关性和差异性分析,结果表明:IN-SITU原状取土管和经典环刀法在土壤容重、毛管孔隙度、饱和水、毛管水、田间持水量、初渗系数、稳渗系数7项土壤物理指标的对比研究中无显著差异,而且两种方法的大部分测定值间无一般差异。两种方法的测定值均表明:阔叶林破坏后,土壤容重值明显增加,孔隙比例改变,而且土壤渗透性变差、持水量下降,出现一系列土壤物理性质退化现象,尤以禾草荒地土壤退化最为严重。显示了IN-SITU原状取土管在土壤物理性质研究中的优越性,尤其在土层浅薄,土壤紧实和粗骨土的山地土壤物理性质研究中,IN-SITU原状取土管不仅对土壤破坏性较小,而且可以获得较为完整的原状土,避免测定结果的误差。  相似文献   

9.
Landscapes of the mountainous regions in northwestern China comprise a unique pattern of vegetation,consisting of a mosaic of grassland and shrub-forest.Forests generally self-organize into ordered structures and coalesce into blocks on north-facing slopes or stripes along southeast-facing slopes,with Picea crassifolia being the most representative and dominant tree species.We investigated the tree-water status and soil-moisture dynamics at a forest site(Guantan)of the Qilian Mountains in northwest China.The 30-minute-interval measurements of tree-sap flow during the growing season of 2008 are presented,and the potential functional relations between tree transpiration and environmental factors are evaluated.Soil moisture and solar energy were identified as the most influential factors,explaining more than 70%of the variance in sap flow.Based on field measurements obtained at the forest site,a stochastic model of soil-moisture dynamics was tested;and the steady-state probability density functions(PDFs)of the long-term soil-moisture dynamics and static tree-water stress were estimated using the validated model and parameters.We found that the model reproduced measured soil moisture well,despite all the simplifying assumptions.The generated PDF of long-term soil moisture was relatively open,with middle to low average values;and the calculated density of the static tree-water stress at the forest site was largely concentrated between 0 and 0.6,suggesting a moderate water-stress situation in most cases.We argue that both water and energy are limiting factors for vegetation at the forest site.In addition,the tradeoff between reduced evapotranspiration(ET)from limited solar energy and increased soil-moisture availability may create a stressed but tolerable environment and,in turn,produce a relatively constant ecological niche favorable to Picea crassifolia growth.  相似文献   

10.
为探讨高寒地区灌丛枯落物层及土壤层的水源涵养功能,以祁连山东段6种典型灌丛的枯落物和土壤为研究对象,采用野外调查与室内浸泡相结合的方法,对枯落物及土壤水文特征进行了研究.结果表明:(1)6种灌丛枯落物的蓄积量范围为0.23~3.61 t·hm-2,大小排序为山生柳>硬叶柳>绣线菊>金露梅>头花杜鹃>千里香杜鹃.(2)枯...  相似文献   

11.
青海海北高寒草甸五种植被生物量及环境条件比较   总被引:11,自引:4,他引:11  
分析了高寒草甸不同植被类型植物种类组成、生物量变化规律及其差异。研究表明不同植被类型的分布与土壤湿度和温度有很大的关系。藏篙草草甸、金露梅灌丛草甸、矮篙草草甸、正恢复的矮篙草草甸、小嵩草草甸这5种不同植被类型所对应的土壤湿度依次降低,而所对应的土壤温度依次升高;植物种类数量表现为矮嵩草草甸>金露梅灌丛草甸>小篙草草甸>正恢复的矮篙草草甸>藏篙草草甸。地上生物量高低依次为小嵩草革甸>矮嵩草草甸>金露梅灌丛草甸>正恢复的矮篙草草甸>藏篙草草甸;地下生物量则表现出金露梅灌丛革甸>矮嵩草甸>小篙草草甸>正恢复的矮篙草草甸的特征,而其在年内的周转值表现出金露梅灌丛草甸>正承复的矮嵩草草甸>小篙草草甸>矮篙草草甸;土壤有机质的季节变化表现为0—40cn整层土壤有机质含量小嵩草草甸>金露梅灌丛草甸>矮嵩草草甸>正恢复的矮篙草草甸,0—10cm的表层土壤有机质金露梅灌丛草甸>矮嵩草草甸>小嵩草草甸>正恢复的矮篙草草甸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号