首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 10-year simulation with a coupled ocean-atmosphere general circulation model (CGCM) is presented. The model consists of the climate version of the Météo-France global forecasting model, ARPEGE, coupled to the LODYC oceanic model, OPA, by the CERFACS coupling package OASIS. The oceanic component is dynamically active over the tropical Pacific, while climatological time-dependent sea surface temperatures (SSTs) are prescribed outside of the Pacific domain. The coupled model shows little drift and exhibits a very regular seasonal cycle. The climatological mean state and seasonal cycle are well simulated by the coupled model. In particular, the oceanic surface current pattern is accurately depicted and the location and intensity of the Equatorial Undercurrent (EUC) are in good agreement with available data. The seasonal cycle of equatorial SSTs captures quite realistically the annual harmonic. Some deficiencies remain including a weak zonal equatorial SST gradient, underestimated wind stress over the Pacific equatorial band and an additional inter-tropical convergence zone (ITCZ) south of the equator in northern winter and spring. Weak interannual variability is present in the equatorial SST signal with a maximum amplitude of 0.5°C.  相似文献   

2.
The impact of the warm SST bias in the Southeast Pacific (SEP) on the quality of seasonal and interannual variability and ENSO prediction in a coupled GCM is investigated. The reduction of this bias is achieved by means of empirical heat flux correction that is constant in time. It leads to a wide range of changes in the tropical Pacific climate including enhanced southeast trades, well-defined dry zone in the SEP, better simulation of the South Pacific Convergence Zone and stronger cross-equatorial asymmetry of the mean state in the eastern Pacific. As a result of the mean climate correction, significant improvements in the simulation of the seasonal cycle of the oceanic and atmospheric states are also observed both at the equator and basin-wide. Due to more realistic simulation of the seasonal evolution of the cold tongue, tropical convection and surface winds in the corrected version of the model, phase-lock of ENSO to the annual cycle looses its strong semi-annual component and becomes quite similar to the observed, although the amplitude of ENSO is reduced. Zonal wind stress response to the SST anomalies in the central-eastern Pacific also becomes more realistic. ENSO retrospective forecast experiments conducted with the directly coupled and the flux-corrected versions of the model demonstrate that deficiencies in the seasonal evolution of the cold tongue/Inter-Tropical Convergence Zone complex (that were largely due to the SEP bias in this model) and the related errors in the ENSO phase-lock to the annual cycle can seriously degrade ENSO prediction. By reducing these errors, ENSO predictive skill in the coupled model was substantially enhanced.  相似文献   

3.
Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden–Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20–100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean–atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.  相似文献   

4.
Interannual and interdecadal variabilities in the Pacific are investigated with a coupled atmosphere-ocean GCM developed at MRI, Japan. The model is run for 70 years with flux adjustments. The model shows interannual variability in the tropical Pacific which has several typical characteristics shared with the observed ENSO. A basin-scale feature of the principal SST variation for the ENSO time scale shows negative correlation in the central North Pacific with the tropical SST, similar to that of the observed one. Associated variation of the model atmosphere indicates an intensification of the Aleutian Low and a PNA-like teleconnection pattern as a response to the tropical warm SST anomaly. The ENSO time scale variability in the midlatitude ocean consists of the westward propagation of the subsurface temperature signal and the temperature variation within the shallow mixed layer forced by the anomalous atmospheric heat fluxes. For the interdecadal time scale, variation of the SST is simulated realistically with a geographical pattern similar to that for the ENSO time scale, but it has a larger relative amplitude in the northern Pacific. For the atmosphere, spatial structure of the variation in the interdecadal time scale is also similar to that in the ENSO time scale, but has smaller amplitude in the northern Pacific. Long oceanic spin-up time (>∼10 y) in the mid-high latitude, however, makes oceanic response in the interdecadal time scale larger than that in the ENSO time scale. The lagged-regression analysis for the ocean temperature variation relative to the wind stress variation indicates that interdecadal variation of the ocean subsurface at the mid-high latitudes is considered as enhanced ocean gyre spin-up process in response to the atmospheric circulation change at the mid-high latitudes, remotely forced by the interdecadal variation of the tropical SST. Received: 6 November 1995 / Accepted: 19 April 1996  相似文献   

5.
F. Codron 《Climate Dynamics》2001,17(2-3):187-203
 The changes of the variability of the tropical Pacific ocean forced by a shift of six months in the date of the perihelion are studied using a coupled tropical Pacific ocean/global atmosphere GCM. The sensitivity experiments are conducted with two versions of the atmospheric model, varied by two parametrization changes. The first one concerns the interpolation scheme between the atmosphere and ocean models grids near the coasts, the second one the advection of water vapor in the presence of downstream negative temperature gradients, as encountered in the vicinity of mountains. In the tropical Pacific region, the parametrization differences only have a significant direct effect near the coasts; but coupled feedbacks lead to a 1 °C warming of the equatorial cold tongue in the modified (version 2) model, and a widening of the western Pacific large-scale convergence area. The sensitivity of the seasonal cycle of equatorial SST is very different between the two experiments. In both cases, the response to the solar flux forcing is strongly modified by coupled interactions between the SST, wind stress response and ocean dynamics. In the first version, the main feedback is due to anomalous upwelling and leads to westward propagation of SST anomalies; whereas the version 2 model is dominated by an eastward-propagating thermocline mode. The main reason diagnosed for these different behaviors is the atmospheric response to SST anomalies. In the warmer climate simulated by the second version, the wind stress response in the western Pacific is enhanced, and the off-equatorial curl is reduced, both effects favoring eastward propagation through thermocline depth anomalies. The modifications of the simulated seasonal cycle in version 2 lead to a change in ENSO behavior. In the control climate, the interannual variability in the eastern Pacific is dominated by warm events, whereas cold events tend to be the more extreme ones with a shifted perihelion. Received: 14 December 1999 / Accepted: 24 May 2000  相似文献   

6.
Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations. Received: 17 April 2000 / Accepted: 17 August 2000  相似文献   

7.
 The mechanisms responsible for the mean state and the seasonal and interannual variations of the coupled tropical Pacific-global atmosphere system are investigated by analyzing a thirty year simulation, where the LMD global atmospheric model and the LODYC tropical Pacific model are coupled using the delocalized physics method. No flux correction is needed over the tropical region. The coupled model reaches its regime state roughly after one year of integration in spite of the fact that the ocean is initialized from rest. Departures from the mean state are characterized by oscillations with dominant periodicites at annual, biennial and quadriennial time scales. In our model, equatorial sea surface temperature and wind stress fluctuations evolved in phase. In the Central Pacific during boreal autumn, the sea surface temperature is cold, the wind stress is strong, and the Inter Tropical Convergence Zone (ITCZ) is shifted northwards. The northward shift of the ITCZ enhances atmospheric and oceanic subsidence between the equator and the latitude of organized convention. In turn, the stronger oceanic subsidence reinforces equatorward convergence of water masses at the thermocline depth which, being not balanced by equatorial upwelling, deepens the equatorial thermocline. An equivalent view is that the deepening of the thermocline proceeds from the weakening of the meridional draining of near-surface equatorial waters. The inverse picture prevails during spring, when the equatorial sea surface temperatures are warm. Thus temperature anomalies tend to appear at the thermocline level, in phase opposition to the surface conditions. These subsurface temperature fluctuations propagate from the Central Pacific eastwards along the thermocline; when reaching the surface in the Eastern Pacific, they trigger the reversal of sea surface temperature anomalies. The whole oscillation is synchronized by the apparent meridional motion of the sun, through the seasonal oscillation of the ITCZ. This possible mechanism is partly supported by the observed seasonal reversal of vorticity between the equator and the ITCZ, and by observational evidence of eastward propagating subsurface temperature anomalies at the thermocline level. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

8.
An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific. The coupled models span a large portion of the parameter space and differ in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models and coarse-resolution global atmosphere models, coarse-resolution global coupled models, and a few global coupled models with high resolution in the equatorial region in their ocean components. The performance of the annual mean state, the seasonal cycle and the interannual variability are investigated. The primary quantity analysed is sea surface temperature (SST). Additionally, the evolution of interannual heat content variations in the tropical Pacific and the relationship between the interannual SST variations in the equatorial Pacific to fluctuations in the strength of the Indian summer monsoon are investigated. The results can be summarised as follows: almost all models (even those employing flux corrections) still have problems in simulating the SST climatology, although some improvements are found relative to earlier intercomparison studies. Only a few of the coupled models simulate the El Niño/Southern Oscillation (ENSO) in terms of gross equatorial SST anomalies realistically. In particular, many models overestimate the variability in the western equatorial Pacific and underestimate the SST variability in the east. The evolution of interannual heat content variations is similar to that observed in almost all models. Finally, the majority of the models show a strong connection between ENSO and the strength of the Indian summer monsoon.  相似文献   

9.
Modeling the tropical Pacific Ocean using a regional coupled climate model   总被引:3,自引:0,他引:3  
A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°×4°global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2°×1°in longitude-latitude).Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated; this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models,(2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly "linear-regression" method is employed to correct the model's exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described.The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.  相似文献   

10.
Richter  Ingo  Tokinaga  Hiroki 《Climate Dynamics》2020,55(9-10):2579-2601

General circulation models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are examined with respect to their ability to simulate the mean state and variability of the tropical Atlantic and its linkage to the tropical Pacific. While, on average, mean state biases have improved little, relative to the previous intercomparison (CMIP5), there are now a few models with very small biases. In particular the equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models. Furthermore, interannual variability in the equatorial and subtropical Atlantic is quite realistic in a number of CMIP6 models, which suggests that they should be useful tools for understanding and predicting variability patterns. The evolution of equatorial Atlantic biases follows the same pattern as in previous model generations, with westerly wind biases during boreal spring preceding warm sea-surface temperature (SST) biases in the east during boreal summer. A substantial portion of the westerly wind bias exists already in atmosphere-only simulations forced with observed SST, suggesting an atmospheric origin. While variability is relatively realistic in many models, SSTs seem less responsive to wind forcing than observed, both on the equator and in the subtropics, possibly due to an excessively deep mixed layer originating in the oceanic component. Thus models with realistic SST amplitude tend to have excessive wind amplitude. The models with the smallest mean state biases all have relatively high resolution but there are also a few low-resolution models that perform similarly well, indicating that resolution is not the only way toward reducing tropical Atlantic biases. The results also show a relatively weak link between mean state biases and the quality of the simulated variability. The linkage to the tropical Pacific shows a wide range of behaviors across models, indicating the need for further model improvement.

  相似文献   

11.
 The new version of the atmospheric general circulation model (AGCM), ECHAM4, at the Max Planck Institute for Meteorology, Hamburg, has been coupled to the OPYC3 isopycnic global ocean general circulation and sea ice model in a multi-century present-day climate simulation. Non-seasonal constant flux adjustment for heat and freshwater was employed to ensure a long-term annual mean state close to present-day climatology. This study examines the simulated upper ocean seasonal cycle and interannual variability in the tropical Pacific for the first 100 years. The coupled model’s seasonal cycle of tropical Pacific SSTs is satisfactory with respect to both the warm pool variation and the Central and Eastern Pacific, with significant errors only in the cold tongue around April. The cold phase cold tongue extent and strength is as observed, and for this the heat flux adjustment does not play a decisive role. A well-established South Pacific convergence zone is characteristic for the new AGCM version. Apart from extending the southeast trades seasonal maximum to midbasin, wind stress pattern and strength are captured. Overall the subsurface structure is consistent with the observed, with a pronounced thermocline at about 150 m depth in the west and rising to the surface from 160 °W to 100 °W. The current system is better resolved than in some previous global models and, on the whole, has the expected shape. The equatorial undercurrent is correctly positioned but the core is only half as strong as observed. The north equatorial current and counter-current also have reduced maximum speeds but the April minimum is captured. As with the companion publication from Roeckner et al. this study finds pronounced tropical Eastern and Central Pacific interannual variability. Simulated and observed NINO3 sea surface temperature (SST) variability is represented by a single, rather broadband, maximum of power spectral density, centered on about 28 months for the simulation and four years for the observations. For simulation and observations, SST, windstress, and upper ocean heat content each exhibit a single dominant large-scale amplitude and phase pattern, suggesting that the model captures the essential dynamics. The amplitude of the essentially standing oscillation in SST in the NINO3 region attains the observed strength, but is weaker at the eastern boundary. Anomalies of upper ocean heat content show off-equatorial westward and equatorial eastward propagation, the latter’s arrival in the east of the basin coinciding with the SST anomalies. Equatorial wind stress anomalies near the date line provide the appropriate forcing and clearly form a response to the anomalous SST. Received: 14 June 1996 / Accepted: 11 November 1997  相似文献   

12.
13.
On the basis of Zeng’s theoretical design, a coupled general circulation model (CGCM) is developed with its characteristics different from other CGCMs such as the unified vertical coordinates and subtraction of the standard stratification for both atmosphere and ocean, available energy consideration, and so on. The oceanic component is a free surface tropical Pacific Ocean GCM between 30oN and 30oS with horizontal grid spacing of 1o in latitude and 2o in longitude, and with 14 vertical layers. The atmospheric component it a global GCM with low-resolution of 4o in latitude and 5o in longitude, and two layers or equal man in the vertical between the surface and 200 hPa. The atmospheric GCM includes comprehensive physical processes. The coupled model is subjected to seasonally-varying cycle. Several coupling experiments, ranging from straight forward coupling without flux correction to one with flux correction, and to so-called predictor-corrector monthly coupling (PCMC), are conducted to show the existence and final controlling of the climate drift in the coupled system. After removing the climate drift with the PCMC scheme, the coupled model is integrated for more than twenty years. The results show reasonable simulations of the annual mean and its seasonal cycle of the atmospheric and oceanic circulation. The model also produces the coherent interannual variations of the climate system, manifesting the observed El Ni?o / Southern Oscillation (ENSO).  相似文献   

14.
Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.  相似文献   

15.
The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model.The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific.The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation.Equatorial upwelling dominates the heat budget in that region.Atmosphere-ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model.After introducing the seasonal cycle of chlorophyll-a concentration,the peak of the power spectrum becomes broad,and longer periods(>3 years) are found.These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves,which are caused by the shallow mean thermocline in the northeastern Pacific.  相似文献   

16.
After the strong 2015/16 El Ni?o event, cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event. Many coupled models failed to predict the cold SST anomalies(SSTAs) in 2017. By using the ERA5 and GODAS(Global Ocean Data Assimilation System) products, atmospheric and oceanic factors were examined that could have been responsible for the second-year cooling, including surface wind and the subsurface thermal state. A time sequence is described to ...  相似文献   

17.
Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF). This hampers a realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.  相似文献   

18.
Many coupled general circulation models (CGCMs) suffer from serious model bias in the zonal gradient of sea surface temperature (SST) in the equatorial Atlantic. The bias of the equatorial Atlantic SST (EASST) may affect the interannual variability of the equatorial Atlantic, which in turn may influence the state of the tropical Pacific. In this paper we investigate the impact of the bias and the interannual variability of the EASST on the tropical Pacific in a CGCM. To determine the impact of the interannual variability of the EASST on the tropical Pacific, we compare a run in a fully coupled mode (CTL run) and a run in which the EASST is nudged toward the climatological monthly mean of the SST in the CTL run, but full air-sea coupling is allowed elsewhere (AT_m run). We find that, when the interannual variability of the EASST is excluded, the thermocline depth in the eastern equatorial Pacific is deepened, and the amplitude of the El Niño/Southern Oscillation is reduced by 30 % compared to the CTL run. The impact of the bias of the EASST on the tropical Pacific is investigated by comparing the AT_m run and a run in which the EASST is nudged toward the observed climatological monthly mean SST (AT_o run). It is found that, when the bias of the EASST is removed (i.e. AT_o run), the Gill–Matsuno type response to the warm SST anomalies in the western equatorial Atlantic induces low-level cyclonic anomalies in the eastern South Pacific, which leads to a deeper thermocline and colder SST in the South Pacific as compared to AT_m. The colder SST in the South Pacific reduces the precipitation along the South Pacific convergence zone. Our results of the model experiments demonstrate the importance of the EASST to the tropical Pacific climate.  相似文献   

19.
 The mechanisms responsible for the seasonal cycle in the tropical central and eastern Pacific sea surface temperature (SST) are investigated using a coupled general circulation model. We find that the annual westward propagation of SST anomalies along the equator is explained by a two-stage process. The first stage sets the phase of the variation at the eastern boundary. The strengthening of the local Hadley Circulation in boreal summer leads to a strengthening of the northward winds that blow across the equator. These stronger winds drive enhanced evaporation and entrainment cooling of the oceanic mixed layer. The resulting change in SST is greatest in the east because the mixed layer is at its shallowest there. As the east Pacific SST cools the zonal SST gradient in the central Pacific becomes more negative. This development signals the onset of the second stage in the seasonal variation of equatorial SST. In response to the anomalous SST gradient the local westward wind stress increases. This increase drives cooling of the oceanic mixed layer in which no single mechanism dominates: enhanced evaporation, wind-driven entrainment, and westward advection all contribute. We discuss the role that equatorial upwelling plays in modulating mixed layer depth and hence the entrainment cooling, and we highlight the importance of seasonal variations in mixed layer depth. In sum these processes act to propagate the SST anomaly westward. Received: 22 February 1999 / Accepted: 20 March 2000  相似文献   

20.
Atlantic and Pacific El Niño are the leading tropical oceanic variability phenomena at interannual timescales. Recent studies have demonstrated how the Atlantic Niño is able to influence on the dynamical processes triggering the development of the Pacific La Niña and vice versa. However, the stationarity of this interbasin connection is still controversial. Here we show for the first time that the Atlantic–Pacific Niños connection takes place at particular decades, coinciding with negative phases of the Atlantic Multidecadal Oscillation (AMO). During these decades, the Atlantic–Pacific connection appears as the leading coupled covariability mode between Tropical Atlantic and Pacific interannual variability. The mode is defined by a predictor field, the summer Atlantic Sea Surface Temperature (SST), and a set of predictand fields which represent a chain of atmospheric and oceanic mechanisms to generate the Pacific El Niño phenomenon: alteration of the Walker circulation, surface winds in western Pacific, oceanic Kelvin wave propagating eastward and impacting on the eastern thermocline and changes in the Pacific SST by internal Bjerknes feedback. We suggest that the multidecadal component of the Atlantic acts as a switch for El Niño prediction during certain decades, putting forward the AMO as the modulator, acting through changes in the equatorial Atlantic convection and the equatorial Pacific SST variability. These results could have a major relevance for the decadal prediction systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号