首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.  相似文献   

2.
This paper describes a pop-up ocean bottom seismograph designed primarily for refraction surveys both on the continental shelf and in deep sea. Its development is the extension of our system based on seismic detectors located on the sea floor with radio transmission of seismic signals and used for seismic refraction studies on the continental shelf. The seismic detectors (vertical geophone or hydrophone and two orthogonally mounted horizontal geophones) are located outside of the pressure vessel on the main frame. Optionally, the seismic sensors may be decoupled from the main frame assembly. This decoupling is performed by a mobile arm positioning the separate three component sensor package on the sea floor.Contribution No. 455 of the Département Scientifique, Centre Océanologique de Bretagne.  相似文献   

3.
The MIT ocean-bottom seismometer is a free-fall, pop-up instrument capable of recording three components of seismic data on the sea floor for periods of at least one month. Data are recorded in digital format on a specially designed magnetic tape recorder. An event recording scheme and semiconductor memories assure both efficient data storage and preservation of first motion information. Sensors and recording electronics are housed in a cylindrical pressure vessel, which sits vertically atop an expendable base plate on the ocean bottom. Attached to the pressure case are three glass spheres for buoyancy. After a pre-set time interval, a motor-driven mechanical latch release frees the instrument to float to the ocean surface for recovery.  相似文献   

4.
The Hawaii Institute of Geophysics began development of the Ocean Subbottom Seisometer (OSS) system in 1978, and OSS systems were installed in four locations between 1979 and 1982. The OSS system is a permanent, deep ocean borehole seismic recording system composed of a borehole sensor package (tool), an electromechanical cable, recorder package, and recovery system. Installed near the bottom of a borehole (drilled by the D/V Glomar Challenger), the tool contains three orthogonal, 4.5-Hz geophones, two orthogonal tilt meters; and a temperature sensor. Signals from these sensors are multiplexed, digitized (with a floating point technique), and telemetered through approximately 10 km of electromechanical cable to a recorder package located near the ocean bottom. Electrical power for the tool is supplied from the recorder package. The digital seismic signals are demultiplexed, converted back to analog form, processed through an automatic gain control (AGC) circuit, and recorded along with a time code on magnetic tape cassettes in the recorder package. Data may be recorded continuously for up to two months in the self-contained recorder package. Data may also be recorded in real time (digital formal) during the installation and subsequent recorder package servicing. The recorder package is connected to a submerged recovery buoy by a length of bouyant polypropylene rope. The anchor on the recovery buoy is released by activating either of the acoustical command releases. The polypropylene rope may also be seized with a grappling hook to effect recovery. The recorder package may be repeatedly serviced as long as the tool remains functionalA wide range of data has been recovered from the OSS system. Recovered analog records include signals from natural seismic sources such as earthquakes (teleseismic and local), man-made seismic sources such as refraction seismic shooting (explosives and air cannons), and nuclear tests. Lengthy continuous recording has permitted analysis of wideband noise levels, and the slowly varying parameters, temperature and tilt.Hawaii Institute of Geophysics Contribution 1909.  相似文献   

5.
The extraction of most oceanic resources including the methods and economics is influenced by the nature and type of the ocean floor as well as the extent to which the geotechnical properties of the ocean bed can be confidently evaluated. In the near-shore and inner continental shelf zones, methods for such evaluation are mostly extensions and modifications of the conventional procedures used onshore. With the expansion of offshore activities into deeper zones, new techniques are needed for preliminary and detailed evaluation of ocean bed characteristics if operations in these deeper regions are to be viable. In recent years, there has been a proliferation in the instrumentation for offshore environments. Geotechnical engineers generally have limited exposure to sophisticated instrumentation techniques, nor are the instrumentation engineers fully conversant with details of geotechnical measurements and their application. This paper reviews the methods currently used for evaluating geotechnical properties of the ocean floor including sampling (corers, etc.), in situ testing (shear vanes, penetrometers, etc.), and indirect (seismic, acoustic, etc.) techniques. The type of data that a geotechnical engineer generally wishes to obtain, the problems in obtaining them, and the application of the data in practice are briefly reviewed.  相似文献   

6.
Ocean bottom seismometers (OBS) have been widely used during the past decade to collect seismic data for determination of the structure of the oceanic lithosphere, stress patterns in regions of earthquake activity, and geoacoustic parameters of the ocean floor. Data quality from these experiments has often been disappointing because of poor signal quality and high noise levels. Many of these problems result from motion of the OBS package that is decoupled from motion of the ocean floor. These coupling problems are more serious in the ocean than on land because of the low shear strengths of most ocean sediments. In this paper we continue to develop the theory of coupling of OBSs to soft sediments and arrive at results suggesting that OBS packages should be designed with: (1) the minimum mass possible, (2) radius of area in contact with the sediment proportional to the cube root of the mass, and the maximum radius less than 1/4 of the shear wavelength, (3) density of the OBS approximately that of the sediment, (4) a low profile and a small vertical cross section with water, and (5) low density gradients, and maximum symmetry about the vertical axis. Agreement of the theory with test data is good; most deviations are reasonable, given limitations of the theory and experiments. The theory also suggests that the coupling frequency, the frequency above which the OBS does not follow the motion of the sediment, is directly proportional to the sediment shear velocity.  相似文献   

7.
Instrument calibration of ocean bottom seismographs   总被引:1,自引:0,他引:1  
To increase the accuracy of measuring sea floor motion with ocean bottom seismometers, we calibrate the seismometer system on the ocean floor. Data from the sea floor calibration, augmented with electronic and land calibration data, enables us to find the OBS transfer function to an accuracy of 0.5% in the frequency range of 0.1 to 32 Hz. We are able to distinguish between temperature, instrument and OBS ground coupling effects, all of which alter the transfer function. This paper reviews our method of calibration and discusses the effects of temperature and some of the instrument design features on the vertical seismometer transfer function.  相似文献   

8.
Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate.Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related?The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.  相似文献   

9.
The Hyuga-nada region of southwest Japan, which is located off the east coast of Kyushu Island, may have the potential to generate great interplate earthquakes along the Nankai trough in the future. In this area, thrust earthquakes of M = 6.7–7.2 have occurred with recurrence intervals of approximately 30 years. In association with these earthquakes, possible local heterogeneities of plate coupling may be expected within 100 km from the coast in the Hyuga-nada region. We investigate numerical experiments to determine the spatial and temporal resolution of slip on the plate interface beneath the Hyuga-nada offshore region. For this purpose, we calculated synthetic displacement data from the result of numerical simulation conducted for the afterslip following an Mw 6.8 earthquake, for existing global positioning system stations on land and planned ocean floor seismic network stations. The spatial and temporal distribution of fault slip is then estimated using a Kalman filter-based inversion. The slip distribution estimated by using ocean floor stations demonstrates that the heterogeneity of plate coupling is resolved approximately within 50 km from the coastal area. This heterogeneity corresponds to the coseismic area of an Mw 6.8 earthquake with a radius of 10 km. Our study quantitatively evaluates the spatial resolution of aseismic slip in the Hyuga-nada region. Analysis based on continuous ocean floor data is useful for resolving the spatial variations of heterogeneities in plate couplings.  相似文献   

10.
To perform geophysical and multidisciplinary real-time measurements on the ocean floor, it has been attempted to reuse decommissioned submarine cables. The VENUS project reuses the TPC-2, which is one of these systems and runs across the entire Philippine Sea Plate between Guam Island and Okinawa Island. The VENUS system comprises an ocean floor observatory, a submarine cable, and a land system. The major components of the ocean floor observatory are geophysical instruments and a telemetry system. There are seven scientific instrument units including broadband seismometers and a hydrophone array. Digital telemetry using the old analog telephone cable obtains high data accuracy and real-time accessibility to data from a laboratory on land. The bottom-telemetry system and a part of sensor units were installed at a depth of 2157 m on the landward slope of the Ryukyu (Nansei-Syoto) Trench on August 29, 1999. The data from the hydrophone array and tsunami gauge have been correctly transmitted to the data center. The rest of the scientific instruments will be deployed by deep-tow equipment and a remotely operated vehicle. Using a decommissioned submarine cable will greatly reduce construction costs compared to using a new cable system  相似文献   

11.
A versatile probe for simultaneous studies of heat flow and near-bottom water parameters has evolved through modifications of the Bullard heat probe frame. Suitable sensor arrays have been used with this instrument to study (1) heat flow through the ocean floor, (2) water column temperature structure, (3) near-bottom current speeds, and (4) the differential cooling of water-column temperature sensors placed in a current speed gradient.Some of the advantages of such a modified Bullard probe are: (1) several parameters, including heat flow, can be measured across the sediment-water interface simultaneously, (2) the instrument frame is rigidly pinned to the ocean floor during measurement, permitting true Eulerian measurement in the water column with no effects of ship movement, swaying moorings or cable oscillation, and (3) the device is inexpensive and simple.  相似文献   

12.
研究海水温盐结构的反射地震方法   总被引:2,自引:1,他引:1  
在物理海洋学的研究中,利用CTD(Conductivity, Temperature and Depth sensors)测量方法研究海水温盐结构存在着获取数据时间长、数据横向精度低的缺点,而利用反射地震记录可以获得剖面上连续的水体温盐结构,弥补了传统方法的不足.反射地震方法研究海水温盐结构是个新的交叉学科方法,称为"地震海洋学".由于海水水体的物性变化比地层物性变化小得多,造成海水水体的反射地震资料信噪比很低,各类干扰强烈,因而海水水体的反射地震资料处理也和常规地震资料处理方法有所不同.它处理的重点是振幅补偿,叠前去噪以及叠后处理.笔者通过对"十五"973项目在南海东北部采集的一条高分辨率多道反射地震测线的海水水体部分的地震数据进行处理,压制了强线性干扰波,获得了水体反射图像.地震叠加速度分析获取的3个CDP (Common Depth Point)的垂向速度从1540 m·s-1单调减小到1478 m·s-1,与CTD测量得到的速度变化趋势一致.  相似文献   

13.
The ocean bottom seismometer capsule contains a 1 Hz. vertical seismometer and triggerable or programmable digital recording system. The output of the seismometer is continuously digitized at a preselected rate of 64, 128, or 256 samples/sec. The digital data words are mixed with a time code and synchronization characters, serialized and passed through a 1536 sample shift register which acts as a delay line. The serial output bits are then encoded and recorded on a SONY TC800B tape recorder which is turned on when a seismic event occurs. The event trigger occurs when the seismic signal jumps to 8 times the time averaged input signal. A memory may be programmed to run the recorder on a schedule so that small amplitude signals from refraction shots are sure to be recorded. Data are recovered using the same recorder for playback and a decoder which provides an analog output for field data interpretation or a digital output for computer analysis. An acoustic transponder allows precise ranges between the capsule and ship to be determined. In addition, commands for the capsule to release or to transmit diagnostic data may be given from the surface ship. The capsule falls freely to the ocean bottom. After a predetermined time or when a release command is received, it is released from a 68 kg steel tripod and floats to the surface. A dual timer and explosive bolt system is used to increase recovery reliability.The first capsules were designed and constructed between October 1972 and October 1973. Good results were obtained from 38 out of 43 launchings made on six expeditions in 1974, 1975, and 1976. Four capsules have been lost.  相似文献   

14.
An acoustic transient recording buoy (ATRB) developed to provide improved dynamic range and recording capacity in a reconfigurable manner is described. This digital system can acquire and record up to 16 h of broadband wide dynamic range (≈80 dB) acoustic data from eight hydrophones. A unique feature is the use of two inexpensive video cassette recorders to obtain up to 10 Gb of data storage capacity. The system is self-contained and capable of unattended bottom-moored operation. An experiment designed and conducted using a single ship and this system to obtain simultaneous measurements of sea surface forward scatter, propagation loss, and sea floor interaction is reported. Data obtained demonstrate the utility of this system for ocean acoustic experiments. Explosive charge source levels using direct path measurements agreed with previous measurements. Surface reflected data exhibited a frequency dependence attributed to sea surface swell and roughness  相似文献   

15.
周浩  段发阶  邵毅  周文清 《海洋科学》2019,43(11):68-75
海洋资料浮标以其多种功能和连续探测能力成为现代海洋观测的重要工具。海洋浮标传感器种类多、通信协议差异性大,为浮标数据采集系统提出了集成应用需求多样、平均开发周期长的问题。本实验设计并实现了基于串行通信波特率特征判别传感器的通用型海洋浮标数据采集系统。系统基于串行通信接口,通过对波特率的自动识别,对多种不同海洋参数传感器的通信特点进行比对分析,从而将传感器进行分类识别,实现外载传感器的自动识别功能;通过IAP设计,实现系统的拓展。最后,通过实验室的原型试验进行技术路线可行性验证。结果表明,系统能够在数秒内快速无误识别信息库中传感器,可以通过分包方式满足远程更新需求。  相似文献   

16.
A fast algorithm for recovering profiles of density and compressional (P) and shear-vertical (SV) wave speeds as functions of depth for the inverse seismic problem in a continuous layered elastic medium is obtained. This algorithm differs from previous fast algorithms for this problem since it requires only the compressional wave P-P reflection response at the surface of the medium, for three different slownesses or angles of incidence. Previous algorithms have required shear stress data in the form of the P-SV and SV-SV reflection responses, making them unsuitable for an ocean environment. This algorithm is thus much more suitable for reconstructing the ocean floor from pressure data taken in the ocean. The algorithm is exact, and it includes the effects of multiple reflections and mode conversions. A computer run illustrates the performance of the algorithm on synthetic data.  相似文献   

17.
To study the time-varying influence of the Congo River and the Benguela Current on the deposition at the Angola Continental Margin, a high-resolution reflection seismic survey was carried out on the northern Congo Fan. Four seismostratigraphic units have been defined for the upper 800 m (1000 ms TWT) of the data. The units record different depositional environments, ranging from pre-establishment of the Congo River drainage system to the influence of the Benguela Current. An indication of a general change in the turbidite system is provided by a shift in channel distribution and a relocation of the depocentre of coarse material. The ascent of salt is recorded up to the Pliocene. Gas that has migrated out of Lower Cretaceous shales and that was produced from large quantities of organic matter in the younger sediments can be found on the flanks and on top of the salt domes. In a few places, this gas even ascends to the ocean floor along structural pathways through the topmost unit.  相似文献   

18.
水色遥感是海洋环境监测的主要技术手段之一.对于任何海洋水色遥感器来说,监测其在轨期间的定标系数变化是非常重要的,否则无法得到精确的定量产品.以我国“HY-1B”卫星水色遥感器为研究对象,开展了基于大洋水体上空的瑞利散射定标方法研究,利用通过对SeaWiFS数据叶绿素、离水辐亮度和气溶胶产品进行分析,选择了符合条件的7个海区实施大气瑞利散射定标,根据2010年12月份选定的4个区域定标结果得到不同海区/不同时间获得的定标系数一致性较好,CH1至CH6的定标系数标准差分布在0.9%~2.1%的范围内,因此瑞利散射定标是有效的非现场定标方法,具有较高的定标精度,其总误差在4.09%.  相似文献   

19.
20.
主要介绍了一种海洋环境连续监测系统的设计与实现。现有的水下监测仪器一般长时间放置在水下,不可避免地会遭受海洋生物附着和损坏,通常3个月到6个月左右需要清理或者更新一次。设计采用新型监测结构,将被测海水抽样到舱内进行相关参数的检测,检测完成后,将海水排回海中,舱内仪器采用消毒液和清水自动冲洗。通过这种方式,避免了海洋生物的附着和污染,检测仪器可以长期可靠地运行,减少了设备的维护次数,在海洋监测领域具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号