首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the spring of 2005, the total particle concentrations and the submicron aerosol size distributions were measured on board the research vessel over the south sea of Korea and the Korean sector of the Yellow Sea. Similar measurements were made over the East China Sea in autumn 2005. The aerosol properties varied dynamically according to the meteorological conditions, the proximity to the land masses and the air mass back trajectories. The average total particle concentration was the lowest over the East China Sea, 4335 ± 2736 cm 3, but the instantaneous minimum, 837 cm 3, for the entire ship measurement was recorded during the Yellow Sea cruise. There was also a long (more than 6 h) stretch of low total particle concentrations that fell as low as 1025 cm 3 during the East China Sea cruise when the ship was the farthest from the shores and the air mass back trajectories resided long hours over the sea. These observations lead to the suggestion of ~ 1000 cm 3 as the background total particle concentration over the marine boundary layer in the studied region of the Yellow Sea and the East China Sea, implying significant anthropogenic influence even for the background value. In the mean time, average aerosol size distributions were unimodal and the mode diameter ranged between 52 and 86 nm, excluding the fog periods, which suggests that the aerosols measured in this study experienced relatively less aging processes within the marine boundary layer.  相似文献   

2.
The South China Sea (SCS) interocean circulation and its associated heat and freshwater budgets are examined using the results of a variable-grid global ocean model. The ocean model has a 1/6° resolution in the SCS and its adjacent oceans. The model results from 1982 to 2003 show that the western Pacific waters enter the SCS through the Luzon Strait with an annual mean volume transport of 4.80 Sv, of which 1.71 Sv returns to the western Pacific through the Taiwan Strait and East China Sea and 3.09 Sv flows toward the Indian Ocean. The heat in the western Pacific is transported to the SCS with a rate of 0.373 PW (relative to a reference temperature 3.72 °C), while the total heat transport through the outflow straits is 0.432 PW. The net heat transport out of the SCS is thus 0.059 PW, which is balanced by a mean net downward heat flux of 17 W/m2 across the SCS air–sea interface. Therefore, the interocean circulation acts as an “air conditioner”, cooling the SCS and its overlaying atmosphere. The SCS contributes a heat transport of 0.279 PW to the Indian Ocean, of which 0.240 PW is from the Pacific Ocean through the Luzon Strait and 0.039 PW is from the SCS interior gained from the air–sea exchange. The Luzon Strait salt transport is greater than the total salt transport leaving the SCS by 3.97 Gg/s, implying a mean freshwater flux of 0.112 Sv (or 3.54 × 1012 m3/year) from the land discharge and P − E (precipitation minus evaporation). The total annual land discharge to the SCS is estimated to be 1.60 × 1012 m3/year, the total annual P − E over the SCS is thus 1.94 × 1012 m3/year, equivalent to a mean P − E of 0.55 m/year. The SCS freshwater contribution to the Indian Ocean is 0.096 Sv. The pattern of the SCS interocean circulation in winter differs greatly from that in summer. The SCS branch of the Pacific-to-Indian Ocean throughflow exists in winter, but not in summer. In winter this branching flow starts at the Luzon Strait and extends to the Karimata Strait. In summer the interocean circulation is featured by a north-northeastward current starting at the Karimata Strait and extending to the Taiwan and Luzon Straits, and a subsurface inflow from the Luzon Strait that upwells into the surface layer in the SCS interior to supply the outward transports.  相似文献   

3.
Analyses of cloud condensation nuclei (CCN) number concentrations (cm− 3) measured at the Mace Head Atmospheric Research Station, near Carna, County Galway, Ireland, using a DH Associates Model M1 static thermal diffusion cloud chamber over the period from March 1994 to September 2002 are presented in this work. Air masses are defined as being ‘marine’ if they originate from a wind direction of 180–300° and ‘continental’ air masses are defined as originating from a wind direction of 45–135°. Air masses without such filtering were classified as ‘undefined’ air masses. Air masses were found to be dominated by marine sector air, re-affirming Mace Head as a baseline atmospheric research station. CCN levels for specific air masses at Mace Head were found to be comparable with earlier studies both at Mace Head and elsewhere. Monthly averaged clean marine (wind direction of 180–300° and black carbon absorption coefficient < 1.425 Mm− 1) CCN and marine CCN varied between 15–247 cm− 3 and 54–670 cm− 3, respectively. As expected, significant increases in number concentration were found in continentally sourced CCN over that of marine CCN and were found to follow a log-normal distribution significantly tighter than that of clean marine air masses. No significant trend was found for CCN over the 9-year period. While polluted continental air masses showed a slight increase in CCN concentrations over the winter months, most likely due to increased fuel usage and a lower mixed boundary layer, the dominance of marine sector air arriving at Mace Head, which generally consists of background CCN concentrations, reduced seasonal differences for polluted air. Marine air showed a distinct seasonal pattern, with elevated values occurring over the spring and summer seasons. This is thought to be due to enhanced biogenic aerosol production as a result of phytoplankton bloom activity in the North Atlantic.  相似文献   

4.
The performance of two different optical concentration-measuring techniques was investigated over a concentration range starting with about 102 cm−3 and extending over more than four decades. Both instruments are capable of real-time counting, however due to their particular design-single particle counter and ensemble particle-measuring system—they operate in overlapping, but different concentration ranges. The upper, coincidence-free counting limit for the single particle counter used in this study was established to be in the order of 104 cm−3. The ensemble technique was found to be functional and stable for concentrations of about 103 cm−3 and limited by the onset of multiple scattering at concentrations nearby 2×106 cm−3. Within the determined boundaries, both techniques proved to provide reliable aerosol concentration data.  相似文献   

5.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

6.
Measurements of natural ice nuclei with a continuous flow diffusion chamber   总被引:1,自引:0,他引:1  
Measurements of natural ice nuclei were made in winter continental airmasses with a continuous flow thermal gradient diffusion chamber (described in a separate paper). Over the range of temperatures −7°C to −20°C, the concentration of ice nuclei was closely related to ice supersaturation (SSi) for humidities both below and above water saturation. Measurements below water saturation were interpreted as deposition nuclei with average concentrations (per liter) approximately 0.32 SSi(%)0.81. Measurements were made up to 5% above water saturation and activated both deposition and condensation-freezing nuclei. The average concentration of condensation-freezing nuclei was 0.25 e−0.15 T(°C). Sample residence time in the chamber was probably too small to detect contact nuclei, unless the nucleating aerosols are extremely small. There was large variability in nucleus concentrations, as much as two orders of magnitude at −15°C. Comparisons are made between these ice nuclei measurements and aircraft observations of ice crystal concentrations in winter orographic clouds.  相似文献   

7.
By making use of TOVS Path-B satellite retrievals and ECMWF reanalyses, correlations between bulk microphysical properties of large-scale semi-transparent cirrus (visible optical thickness between 0.7 and 3.8) and thermodynamic and dynamic properties of the surrounding atmosphere have been studied on a global scale. These clouds constitute about half of all high clouds. The global averages (from 60°N to 60°S) of mean ice crystal diameter, De, and ice water path (IWP) of these clouds are 55 μm and 30 g m−2, respectively. IWP of these cirrus is slightly increasing with cloud-top temperature, whereas De of cold cirrus does not depend on this parameter. Correlations between De and IWp of large-scale cirrus seem to be different in the midlatitudes and in the tropics. However, we observe in general stronger correlations between De and IWP and atmospheric humidity and winds deduced from the ECMWF reanalyses: De and IWP increase both with increasing atmospheric water vapour. There is also a good distinction between different dynamical situations: In humid situations, IWP is on average about 10 gm−2 larger in regions with strong large-scale vertical updraft only that in regions with strong large-scale horizontal winds only, whereas the mean De of cold large-scale cirrus decreases by about 10 μm if both strong large-scale updraft and horizontal winds are present.  相似文献   

8.
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction.  相似文献   

9.
Summary The structure and variability of the inter-tropical convergence zone (ITCZ) in the SW Indian Ocean in the austral summer is investigated. The ITCZ is identified by satellite microwave (SSMI) precipitable water (PW) values > 5 g cm–2, minimum outgoing longwave radiation (OLR) values < 220 W m–2 and the pattern of convergence in the low level (850 hPa) winds. According to OLR climatology, the ITCZ lies over 15°S latitude to the west of Madagascar (40–50°E), but near 10°S to the east of 60°E. Inter-annual and intra-seasonal variability is induced by the interaction of the convective NW monsoon and subsident easterly trades. Symptoms of the structure and variability are presented using tropical cyclone (TC) tracks, axes of PW exceedences and OLR, 850hPa wind and PW fields in the period 1988–1990. The shape and intensity of the ITCZ is modulated by the strength of the NW monsoon off east Africa and by standing vortices in the SW Indian Ocean. The topography of Madagascar imparts a distinctive break in convective characteristics, and distinguishes the SE African ITCZ from its maritime counterpart.With 6 Figures  相似文献   

10.
In the present study, the precipitation near Büyükçekmece Lake, which is one of the important drinking water sources of Istanbul city, was studied during October 2001–July 2002. Seventy-nine bulk precipitation samples were collected at two sampling stations near the Lake (41°2′35″N, 28°35′25″E and 41°5′30″N, 28°37′7″E). The study comprised the determination of H+, Cl, NO3, SO42−, NH4+, Na, K, Mg, Ca, Al, Ba, Fe, Cu and Mn concentrations in bulk deposition rain event samples. The average volume-weighted pH value was found to be 4.81, which points out that the rain is slightly acidic. High sulfate concentrations were observed together with high H+ ion values. Sulfur emissions were the major cause for the observed high hydrogen ion levels. On the basis of factor analysis and correlation matrix analysis, it has been found that in this region, acid neutralization is brought about by calcium rather than the ammonium ion. The varimax rotated factor analysis grouped the variables into four factors, which are crustal, marine and two anthropogenic sources.  相似文献   

11.
DMS emissions and fluxes from the Australasian sector of the Antarctic and Subantarctic Oceans, bound by 46–68° S and 65.5–142.6° E, were determined from a limited number of samples (n=32) collected during three summer resupply voyages to Australian Antarctic continental research bases between November 1988 and January 1989 (a 92 day period). The maximum DMS emission from this sector of the Antarctic Ocean was in an area near the Antarctic Divergence (60–63° S) and the minimum DMS emission was from the Antarctic coastal and offshelf waters. The greatest emission of DMS from this sector of the Southern Ocean was from the Subantarctic waters. DMS flux from the Australasian Antarctic Ocean was 64.3×106 (±115) mol d–1 or 5.9 (±10.6)×109 mol based on an emission of 10.9 (±19.5) µmol m–2 d–1 (n=26). The flux of DMS from the Australasian sector of the Subantarctic Ocean was probably twice the flux of DMS from the adjacent Antarctic Ocean.  相似文献   

12.
Based on earlier experimental studies, the ice nucleating abilities of further pollen types were investigated in the immersion and contact freezing modes. The studies were carried out at the Mainz vertical wind tunnel with freely floating supercooled droplets down to − 28 °C. The pollen had diameters between 26 and 28 μm and correspondingly low sink velocities around 2.5 cm s 1. The radii of the studied drops were calculated from the recorded wind velocity and for both freezing modes the radii of the observed droplets varied between 315 and 380 μm. Immersion freezing experiments were conducted with pollen particles added to the droplets while in contact freezing experiments supercooled droplets were subjected to a burst of pollen particles. The median freezing temperatures found in the immersion freezing mode were: − 13.5 °C (alder), − 21.5 °C (lombardy poplar), − 21.0 °C (redtop grass) and − 19.8 °C (kentucky blue). The median freezing temperatures in the contact freezing mode were found as: − 12.6 °C (alder), − 17.9 °C (lombardy poplar), − 18.7 °C (redtop grass) and − 16.1 °C (kentucky blue). The results show that the ice nucleating ability of pollen is not restricted to single pollen types but seems to be a general pollen property.  相似文献   

13.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

14.
A detailed study of long-term variability of winds using 30 years of data from the European Centre for Medium-range Weather Forecasts global reanalysis (ERA-Interim) over the Indian Ocean has been carried out by partitioning the Indian Ocean into six zones based on local wind extrema. The trend of mean annual wind speed averaged over each zone shows a significant increase in the equatorial region, the Southern Ocean, and the southern part of the trade winds. This indicates that the Southern Ocean winds and the southeast trade winds are becoming stronger. However, the trend for the Bay of Bengal is negative, which might be caused by a weakening of the monsoon winds and northeast trade winds. Maximum interannual variability occurs in the Arabian Sea due to monsoon activity; a minimum is observed in the subtropical region because of the divergence of winds. Wind speed variations in all zones are weakly correlated with the Dipole Mode Index (DMI). However, the equatorial Indian Ocean, the southern part of the trade winds, and subtropical zones show a relatively strong positive correlation with the Southern Oscillation Index (SOI), indicating that the SOI has a zonal influence on wind speed in the Indian Ocean. Monsoon winds have a decreasing trend in the northern Indian Ocean, indicating monsoon weakening, and an increasing trend in the equatorial region because of enhancement of the westerlies. The negative trend observed during the non-monsoon period could be a result of weakening of the northeast trade winds over the past few decades. The mean flux of kinetic energy of wind (FKEW) reaches a minimum of about 100?W?m?2 in the equatorial region and a maximum of about 1500?W?m?2 in the Southern Ocean. The seasonal variability of FKEW is large, about 1600?W?m?2, along the coast of Somalia in the northern Indian Ocean. The maximum monthly variability of the FKEW field averaged over each zone occurs during boreal summer. During the onset and withdrawal of monsoon, FKEW is as low as 50?W?m?2. The Southern Ocean has a large variation of about 1280?W?m?2 because of strong westerlies throughout the year.  相似文献   

15.
The hydrodynamic equations governing the water-level response of a lake to wind stress are inverted to determine wind stress from water-level fluctuations. In order to obtain a unique solution, the wind-stress field is represented in terms of a finite number of spatially dependent basis functions with time-dependent coefficients. The discretized version of the inverse equation is solved by a least-squares procedure to obtain the coefficients, and thereby the stress. The method is tested for several ideal cases with Lake Erie topography. Real water-level data is then used to determine hourly values of vector wind stress over Lake Erie for the period 5 May–31 October, 1979. Results are compared with measurements of wind speed and direction from buoys deployed in the lake. Calculated stress direction agrees with observed wind direction for wind speeds > 7.5 m s−1. Under neutral conditions, calculated drag coefficients increase with the wind speed from 1.53 × 10−3 for 7.5−10 m s−1 winds to 2.04 × 10−3 for 15−17.5 m s−1 winds. Drag coefficients are lower for stable conditions and higher for unstable conditions.  相似文献   

16.
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m− 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

17.
A total of 48 precipitation samples have been collected from individual precipitation events at the Nam Co Monitoring and Research Station for Multisphere Interactions (Nam Co Station, 30°47′N, 90°58′E; 4730 m a.s.l) located in the central Tibetan Plateau from August 2005 to August 2006. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, NO3 and SO42−), conductivity and pH. Precipitation pH values ranged from 6.03 to 7.38 with an average value of 6.59. The high pH is due to large inputs of crustal aerosols in the atmosphere, which contain a large fraction of carbonate. Ca2+ is the dominant cation in precipitation with an average value of 65.58 μeq L− 1 (4.91–301.41 μeq L− 1), accounting for 54% of the total cations in precipitation. HCO3 is the predominant anion, accounting for 62% of the total anions. When compared with data from a snow pit in the Zhadang Glacier 50 km away (5800 m a.s.l), major ion concentration in precipitation at the Nam Co Station is much higher due to local aerosol inputs. Correlation and empirical orthogonal function (EOF) analysis indicate that regional crustal aerosols and species from combustion emissions of residents are the major sources for these ions, lake salt aerosols from the Nam Co nearby and regional mineral aerosols from dry lake sediments are secondary sources, and sea salt contribution is the least due to the long distance transport.  相似文献   

18.
Turbulent fluxes have been evaluated for clear sunny days over the Indian Antarctic station, Maitri, using the basic meteorological data recorded at four levels of a 28 m tower. The data are supplemented with radiation data. The surface layer over Maitri remains thermally stratified during the hours of minimum solar insolation, the so-called nighttime period. The surface winds during this period are generally very strong resulting in high momentum fluxes. In particular, for high winds (>12 m s–1), the temperature gradient is found to be less positive than for moderate winds (4 to 7 m s–1). Solar insolation provided the daytime heating necessary for the diurnal variation of atmospheric stability, and hence, for the turbulent fluxes. Thus, on clear days daytime conditions are marked by upward transport of heat with reduced momentum flux, while stable nighttime conditions are marked by a downward heat flux with increased momentum fluxes.  相似文献   

19.
Major ion concentrations and strontium isotopic ratios (87Sr/86Sr) were measured in rainwater samples collected at the urban site of Lanzhou, a city located on the Loess Plateau in the arid and semi-arid areas of northwest China. The rainwater samples possessed alkaline pH, at a reference level of 5.6, with a range of 6.82 to 8.28 and a volume-weighted mean (VWM) pH value of 7.70. The alkaline character of rainwater in Lanzhou is due to the result of neutralization caused by the alkaline soil dusts which contain large amount of CaCO3. It was observed that Ca2+ was the most abundant cation with a VWM value of 886 µeq l− 1 (115–2184 µeq l− 1), accounting for 87.8% of the total cations. Without considering HCO3, SO42− and NO3 were dominant among the anions, accounting for 64.2% and 23.0%, respectively, of the total measured anions. Using Na as an indicator of marine origin and Al for terrestrial inputs, the proportions of sea salt and non-sea-salt elements were estimated from elemental ratios. The precipitation in this region has typical continental characteristics. The Sr concentrations varied from 0.004 to 0.885 µmol l− 1, and strontium isotopic ratios (87Sr/86Sr) lay in the range of 0.71025–0.71302, with an average of 0.71143. The 87Sr/86Sr ratios of Lanzhou rainwater are higher than that of seawater, which reflects contributions from the radiogenic Sr sources of the aerosols. The most suitable candidate for the source would be the soil dust originating from local and distant loess and desert areas. The 87Sr/86Sr ratios were used to characterize different sources of base cations in rainwater, suggesting that the samples could be interpreted in terms of combinations of at least three components: soil dust derived from the Loess Plateau and desert areas in northwest China (with 87Sr/86Sr ~ 0.7130), seawater (with 87Sr/86Sr ~ 0.70917), and anthropogenic inputs (with 87Sr/86Sr ~ 0.7103). The high 87Sr/86Sr ratio and Ca and Sr content in the rainwater from Lanzhou can be attributed to the dissolution of calcium carbonate in soil dust.  相似文献   

20.
Black carbon relationships with emissions and meteorology in Xi'an, China   总被引:4,自引:0,他引:4  
Aerosol black carbon (BC) was measured every 5 min at Xi'an, China from September 2003 to August 2005. Daily BC concentrations ranged from 2 to 65 μg m− 3, averaging 14.7 ± 9.5 μg m− 3 and displayed clear summer minima and winter maxima. BC typically peaked between 0800 and 1000 LST and again between 2000 and 2200 LST, corresponding with morning and evening traffic combined with nighttime residential cooking and heating. The nocturnal peak was especially evident in winter, when more domestic heating is used and pollutant-trapping surface-inversions form earlier than in summer. BC frequency distributions the most commonly occurring concentrations occurred between 5 and 10 μg m− 3 in all four seasons. BC ranged from 1.6% and 15.6%, and averaged 8.3% of PM2.5. A clear inverse relationship between BC and wind speed (WS) was found when WS was below 2.5 to 3.0 m s− 1, implying a local origin for BC. Mixed layer depths (MLDs) were shallower during BC episodes compared to cleaner conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号