共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
利用浙北地区的气象资料,分析了厄尔尼诺现象与长江中下游气象灾害的关系和厄尔尼诺现象与它的前期一些特定的气候条件的关系.分析结果表明,后者有很好的对应关系,它为预测厄尔尼诺现象提供一个科学的依据. 相似文献
3.
长江中下游梅雨与中国夏季旱涝分布 总被引:18,自引:3,他引:18
利用长江中下游116年梅雨资料及近50年的基本雨型划分结果,统计分析了三类雨型的梅雨特征,并对20世纪80年代以后的梅雨及旱涝异常作了成因分析。结果指出,80年代以来夏季东亚阻塞高压活动频繁,从而遏制了西太平洋副热带高压季节性北进是夏季梅雨偏丰和雨带偏南的直接原因,其根本原因还有待进一步研究。 相似文献
4.
长江中下游夏季极端降水指数的变化特征 总被引:1,自引:0,他引:1
利用长江中下游地区66个气象站逐日降水资料,通过经验正交函数分解分析中雨以上日数极端降水指数及形成的原因。结果表明:长江中下游中雨以上日数主要表现为全区一致型、南北反向型,且两种分布形势均存在准2 a周期的年际变化和年代际变化;中雨以上日数在1990s开始显著增长,2000s以来,长江以北地区偏多,长江以南地区偏少;2000—2011年,我国东部经向上仍旧存在"反气旋—气旋"水汽输送异常,蒙古高原反气旋型水汽输送加强,引起雨带停滞在长江以北,造成长江以南地区中雨以上日数偏少。 相似文献
5.
长江三峡地区夏季旱涝特征及气候预测 总被引:8,自引:0,他引:8
利用1951~2000年间三峡地区上游5个流域区间(乌江流域、重庆—万县、万县—坝区、嘉陵江流域、岷沱江流域)面降雨量资料分析了三峡地区夏季5、6、7、8月及6~8月旱涝分布特点和成因,探讨了若干主要环流系统对这一地区夏季旱涝的影响,建立了长江三峡地区夏季降水趋势概念化预测模型;模型思路清晰,方法简便,历史拟合率较高,2000、2001、2002年三年的预测结果基本是成功的。 相似文献
6.
7.
副高持续异常对长江中下游夏季降水的影响 总被引:7,自引:0,他引:7
分析了从上一年夏季以来 5 0 0 h Pa高度距平场的持续变化对当年长江中下游地区汛期降水的影响。结果表明 ,前期副热带地区高度距平累积指数与长江中下游地区汛期降水有密切的关系 ,与全国降水的分布也有一定的联系 相似文献
8.
长江中下游夏季旱涝并存及其异常年海气特征分析 总被引:6,自引:1,他引:6
利用国家气候中心提供的1957~2000年中国720站夏季(5~8月)逐日降水资料,对长江中下游地区夏季旱涝并存现象进行研究,并定义了一个季时间尺度的旱涝并存指数(IDFC),再结合NCEP/NCAR的500 hPa高度场、850 hPa风场等再分析资料以及Reynolds海温资料,对该地区旱涝并存异常年的海气背景特征进行了统计分析.结果表明:近50年长江中下游夏季旱涝并存异常的发生频率呈现上升趋势;夏季旱涝并存异常年,西太平洋副高空间活动范围较大,同期东亚夏季风偏弱;在其前期6个月中,阿拉伯海、孟加拉湾和中国南海海温显著偏高,另外赤道东太平洋海温呈现上升趋势,对应着El Nino的成熟阶段或发展阶段.所有这些为长江中下游夏季旱涝并存现象的预测,提供了有参考意义的前兆信号. 相似文献
9.
10.
利用1951—2004年我国740站逐日降水资料对夏季长江中下游典型旱涝年季节内振荡周期、强度和位相等特征进行合成对比分析发现:长江中下游涝年降水季节内振荡周期较旱年长, 涝年以30~60 d周期为主, 而旱年以10~30 d周期为主。旱涝年长江中下游地区夏季降水的10~30 d振荡整体上均强于30~60 d振荡; 10~30 d及30~60 d振荡, 涝年的强度都大于旱年。季节内振荡在旱年的北传较涝年强, 能达到50°N附近; 而涝年不仅有明显的季节内振荡从低纬度地区向北传播, 同时还有弱的振荡从中高纬度地区向南传播, 两者汇合于长江流域形成强的振荡中心。影响我国低频降水的低频异常环流分布模态在旱涝年是一致的, 但涝年的低频环流强于旱年, 而这种低频环流场的差异正是造成涝年的低频降水强于旱年的原因之一。 相似文献
11.
根据石羊河流域中游(武威)和下游(民勤)气象站1960—2015年逐日最高、平均气温观测数据,采用固定阈值法(天气标准)和百分位阈值法(平均标准)定义了高温事件,运用气候统计学方法分析了该区域高温事件强度、日数和极值的变化特征。统计结果显示,中、下游年代、年天气标准和平均标准高温事件强度总体上呈增强和日数呈增多趋势,2010—2015年高温事件强度增强和日数增多趋势明显,高温事件极值也呈增强趋势。高温事件出现在5—9月,高温事件强度和日数的高峰值均在7月,依次向两端递减。高温事件强度和日数均为下游>中游,说明闷热天气持续时间下游比中游更长。高温事件中、下游年天气标准强度和日数时间序列没有发生周期性变化,平均标准强度和日数时间序列均存在着5~7 a的准周期变化。高温事件中、下游天气标准强度和日数以及平均标准强度均没有发生气候突变,平均标准日数发生了气候突变,突变时间中游在1997年、下游在1996年。年高温事件存在一定的异常性,高温事件强度和日数正常年份概率在58.9%~73.2%,对生命健康和安全生产造成危害的强度偏强和特强年份概率在14.3%~16.9%、日数偏多和特多年份概率在14.3%~21.4%。 相似文献
12.
根据石羊河流域中游(武威)和下游(民勤)气象站1960—2015年逐日最高、平均气温观测数据,采用固定阈值法(天气标准)和百分位阈值法(平均标准)定义了高温事件,运用气候统计学方法分析了该区域高温事件强度、日数和极值的变化特征。统计结果显示,中、下游年代、年天气标准和平均标准高温事件强度总体上呈增强和日数呈增多趋势,2010—2015年高温事件强度增强和日数增多趋势明显,高温事件极值也呈增强趋势。高温事件出现在5—9月,高温事件强度和日数的高峰值均在7月,依次向两端递减。高温事件强度和日数均为下游中游,说明闷热天气持续时间下游比中游更长。高温事件中、下游年天气标准强度和日数时间序列没有发生周期性变化,平均标准强度和日数时间序列均存在着5~7 a的准周期变化。高温事件中、下游天气标准强度和日数以及平均标准强度均没有发生气候突变,平均标准日数发生了气候突变,突变时间中游在1997年、下游在1996年。年高温事件存在一定的异常性,高温事件强度和日数正常年份概率在58.9%~73.2%,对生命健康和安全生产造成危害的强度偏强和特强年份概率在14.3%~16.9%、日数偏多和特多年份概率在14.3%~21.4%。 相似文献
13.
用营口市所管辖3个站1981~2000年的日最高气温资料,查找大于等于33℃高温个例,统计分析了高温当日的气象要素特征;根据近20年历史天气图等资料,系统总结了营口市高温的天气气候特征和高温出现的高空、低空及地面形势场特征。运用经验性预报方法,提取预报指标;结合各种数值预报产品,进行逐条检验是否符合条件,最后建立经验性预报模式。建立的大于等于33℃高温的预报方法,经近几年的检验,能够比较好地预测夏季高温天气。 相似文献
14.
和田河流域1954—2007年气温及降水气候特征分析 总被引:4,自引:2,他引:4
应用和田河流域和田市气象站1954-2007年逐月平均气温和降水量资料,采用趋势系数、Morlet小波分析法分析了54a来和田河流域气温、降水趋势变化及周期特征,结果表明:气温和降水变化呈暖湿化发展,气温线性变暖率为0.33℃/10a,降水线性递增率为2.1mm/10a,各年代变化趋势存有差异,但基本与西北地区气候变化趋势一致;小波系数的实部、模、位相信息准确揭示出了不同时间尺度下气温、降水的年际、年代际周期演变、强度变化以及突变特征。 相似文献
15.
基于信息扩散理论的长江中下游地区高温热害风险分析 总被引:4,自引:0,他引:4
基于长江中下游地区85个站点1961—2008年水稻减产率,采用基于信息扩散理论的信息分配方法,研究长江中下游地区水稻高温热害风险的年代际变化和空间分布。结果表明,20世纪60年代风险值相对较小,高温热害发生较少,2000年以后风险值较大,灾情较重,高温热害风险的变化呈增加的趋势。发生高温热害风险较大的地区主要位于研究区的安徽、浙江、湖北西部和东部以及江西东北部和中部地区。其中,浙江丽水和湖北宜昌地区风险值都超过了0.25;江苏东南部、湖南西南和东北部地区属于高温热害风险较低的地区。 相似文献
16.
Philip E.BETT Adam A.SCAIFE Chaofan LI Chris HEWITT Nicola GOLDING Peiqun ZHANG Nick DUNSTONE Doug M.SMITH Hazel E.THORNTON Riyu LU Hong-Li REN 《大气科学进展》2018,35(8):918-926
The Yangtze River has been subject to heavy flooding throughout history,and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods.Dams along the river help to manage flood waters,and are important sources of electricity for the region.Being able to forecast high-impact events at long lead times therefore has enormous potential benefit.Recent improvements in seasonal forecasting mean that dynamical climate models can start to be used directly for operational services.The teleconnection from El Ni ?no to Yangtze River basin rainfall meant that the strong El Ni ?no in winter 2015/16 provided a valuable opportunity to test the application of a dynamical forecast system.This paper therefore presents a case study of a real-time seasonal forecast for the Yangtze River basin,building on previous work demonstrating the retrospective skill of such a forecast.A simple forecasting methodology is presented,in which the forecast probabilities are derived from the historical relationship between hindcast and observations.Its performance for2016 is discussed.The heavy rainfall in the May–June–July period was correctly forecast well in advance.August saw anomalously low rainfall,and the forecasts for the June–July–August period correctly showed closer to average levels.The forecasts contributed to the confidence of decision-makers across the Yangtze River basin.Trials of climate services such as this help to promote appropriate use of seasonal forecasts,and highlight areas for future improvements. 相似文献
17.
江淮流域水稻高温热害灾损变化及应对策略 总被引:10,自引:2,他引:10
构建基于Logistic模型的规范化可累计高温热害综合指数,研究了江淮流域高温热害与单季稻产量损失的时空对应关系,发现江淮流域西北部为单季稻高温热害灾损关键区,高温热害平均减产率从20世纪70年代的8.9%上升到21世纪的17.9%,花期处在高温集中时段是单季稻减产的主要原因.江淮流域单季稻生育关键期高温热害出现年代际波动,20世纪60年代高温热害最强,21世纪初覆盖范围最广.高温热害覆盖面积比例在1971年发生突变后迅速上升,到21世纪初超过63.6%.每年7月11日至8月15日为江淮流域高温集中时段,高温出现比例超过20%.20世纪70年代以来高温集中时段的热害强度以增强为主,江淮东南部趋势显著,但通过采用晚熟品种和推迟播期,江淮东南部单季稻花期成功避开高温集中时段.综合考虑气温稳定通过20℃终日的气候平均值、高温热害变化和气候变暖背景下热量资源的改善,借鉴江淮东南部成功经验,建议全流域推广中晚熟品种,自北向南播种期延迟到5月上、中、下旬,花期安排在8月下旬至9月上旬,避开高温同时能保证单季稻生育关键期处在20℃以上安全生长季内. 相似文献
18.
19.
利用NCEP/NCAR再分析资料及常规气象水文实况观测资料,分析了2018年6—7月长江上游严重洪涝期间的气象水文特征,结果表明:2018年长江上游洪涝期间发生了三次强降水过程,降水落区在长江上游北部地区高度重叠,引发了严重的洪涝灾害。大尺度的环流形势分析表明,中高纬低槽、副热带高压、鄂霍茨克海阻塞高压、乌拉尔山阻塞高压均较历史同期异常偏强,副热带高压的南北摆幅较大,当副热带高压每次北跳后,都会与槽后冷空气在长江上游遭遇,形成一次强降水过程。大尺度环流的“鞍”型场配置有利于孟加拉湾及南海的水汽输送到长江上游地区,并在该地区与中纬度西风带水汽辐合形成强降水。历史对比结果表明:2018年长江上游的降水具有面上强度大、北部支流降水极端性强、降水时间集中的特点。2018年长江上游北部的沱江、涪江、嘉陵江等流域在水位和超警戒时间上均高于2012年。2018年长江上游总的降水量及洪峰流量虽未超过2012年,但在长江上游北部的沱江、涪江、嘉陵江引发的洪涝灾害可超过2012年。 相似文献
20.
武汉市盛夏高温气候特征和成因及预报 总被引:4,自引:0,他引:4
利用1950~2005年盛夏(7~8月)逐日武汉市最高温度、2002年和2003年6~8月T213格点风和垂直速度资料,分析了武汉盛夏高温的气候特征,研究了高温过程及西太平洋副热带高压活动特点。分析结果表明:20世纪50年代末至60年代初、60年代中期、70年代后期、90年代和2000~2005年为高温日数偏多的5个阶段。80年代高温日数偏少。对较大的时间尺度而言,强的高温集中在50年代后期至60年代以及90年代后期至2005年。强高温过程集中在7月下旬至8月上旬。西太平洋副热带高压持续稳定控制长江中下游,是造成高温及强高温过程的主要环流系统。选用ECMWF和T213温度和纬向风场预报产品,应用灰色预测方法建立了武汉市盛夏日最高温度预报模型,该模型试用于2003年和2006年盛夏高温预报,检验结果表明该模型提供的高温定量预报有一定的参考价值。 相似文献