首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reviews the evidence and history of glacier fluctuations during the Little Ice Age (LIA) in the Canadian Rockies. Episodes of synchronous glacier advance occurred in the 12th–13th, early 18th and throughout the 19th centuries. Regional ice cover was probably greatest in the mid-19th century, although in places the early 18th century advance was more extensive. Glaciers have lost over 25% of their area in the 20th century. Selective preservation of the glacier record furnishes an incomplete chronology of events through the 14th–17th centuries. In contrast, varve sequences provide continuous, annually resolved records of sediments for at least the last millennium in some highly glacierized catchments. Such records have been used to infer glacier fluctuations. Evaluation of recent proxy climate reconstructions derived from tree-rings provides independent evidence of climate fluctuations over the last millennium. Most regional glacier advances follow periods of reduced summer temperatures, reconstructed from tree rings particularly ca. 1190–1250, 1280–1340, 1690s and the 1800s. Reconstructed periods of higher precipitation at Banff, Alberta since 1500 are 1515–1550, 1585–1610, 1660–1680 and the 1880s. Glacier advances in the early 1700s, the late 1800s and, in places, the 1950–1970s reflect both increased precipitation and reduced summer temperatures. Negative glacier mass balances from 1976 to 1995 were caused by decreased winter balances. The glacier fluctuation record does not contain a simple climate signal: it is a complex response to several interacting factors that operate at different timescales. Evaluation of climate proxies over the last millennium indicates continuous variability at several superimposed timescales, dominated by decade–century patterns. Only the 19th century shows a long interval of sustained cold summers. This suggests that simplistic concepts of climate over this period should be abandoned and replaced with more realistic records based on continuous proxy data series. The use of the term LIA should be restricted to describing a period of extended glacier cover rather than being used to define a period with specific climate conditions.  相似文献   

2.
The status of tropical glaciers is enormously important to our understanding of past, present, and future climate change, yet lack of continuous quantitative records of alpine glacier extent on the highest mountains of tropical East Africa prior to the 20th century has left the timing and drivers of recent glacier recession in the region equivocal. Here we investigate recent changes (the last 150–700 years) in lacustrine sedimentation, glacier extent, and biogeochemical processes in the Rwenzori Mountains (Uganda- Democratic Republic of Congo) by comparing sedimentological (organic and siliciclastic component determined by loss-on-ignition; LOI) and organic geochemical profiles (carbon and nitrogen abundance, ratio, and isotopic composition of sedimentary organic matter) from lakes occupying presently glaciated catchments against similar profiles from lakes located in catchments lacking glaciers. The siliciclastic content of sediments in the ‘glacial lakes’ significantly decreases towards the present, whereas ‘non-glacial lakes’ generally show weak trends in their siliciclastic content over time, demonstrating that changes in the siliciclastic content of glacial lake sediments primarily record fluctuations in glacier extent. Radiometric dating of our sediment cores indicates that prior to their late 19th-century recession Rwenzori glaciers stood at expanded ‘Little Ice Age’ positions for several centuries under a regionally dry climate regime, and that recession was underway by 1870 AD, during a regionally wet episode. These findings suggest that the influence of late 19th century reductions in precipitation in triggering Rwenzori glacier recession is weaker than previously thought. Our organic geochemical data indicate that glacier retreat has significantly affected carbon cycling in Afroalpine lakes, but trends in aquatic ecosystem functioning are variable among lakes and require more detailed analysis.  相似文献   

3.
Little Ice Age (LIA) moraines along the margins of Skálafellsjökull and Heinabergsjökull, two neighbouring outlet glaciers flowing from the Vatnajökull ice‐cap, have been re‐dated to test the reliability of different lichenometric approaches. During 2003, 12 000 lichens were measured on 40 moraine fragments at Skálafellsjökull and Heinabergsjökull to provide surface age proxies. The results are revealing. Depending on the chosen method of analysis, Skálafellsjökull either reached its LIA maximum in the early 19th century (population gradient) or the late 19th century (average of five largest lichens), whereas the LIA maximum of Heinabergsjökull occurred by the mid‐19th century (population gradient) or late‐19th century (average of 5 largest lichens). Discrepancies (c. 80 years for Skálafellsjökull and c. 40 years for Heinabergsjökull) suggest that the previously cited AD 1887 LIA maxima for both glaciers should be reassessed. Dates predicted by the lichen population gradient method appear to be the most appropriate, as mounting evidence from other geochronological reconstructions and sea‐ice records throughout Iceland tends to support an earlier LIA glacier maximum (late 18th to mid‐19th century) and probably reflects changes in the North Atlantic Oscillation. These revised chronologies shed further light on the precise timing of the Icelandic LIA glacier maximum, whilst improving our understanding of glacier‐climate interactions in the North Atlantic.  相似文献   

4.
Glacier advance and recession are considered key indicators of climate change. Understanding the relationship between climatic variations and glacial responses is crucial. Here, we apply archival digital photogrammetry to reconstruct the decadal scale glacial history of an unmonitored Alpine valley glacier, the Haut Glacier d'Arolla, Switzerland, and we use the data generated to explore the linkages between glacier recession and climate forcing. High precision digital elevation models were derived. They show continual recession of the glacier since 1967, associated with long‐term climatic amelioration but only a weak reaction to shorter‐term climatic deterioration. Glacier surface velocity estimates obtained using surface particle tracking showed that, unlike for most Swiss glaciers during the late 1970s and early 1980s, ice mass flux from the accumulation zone was too low to compensate for the effects of glacier thinning and subsequent snout recession, especially during the rapid warming that occurred through the 1980s. The results emphasise the dangers of inferring glacier response to climate forcing from measurements of the terminus position only and the importance of using remote sensing methods as an alternative, especially where historical imagery is available.  相似文献   

5.
谢焕强 《地理研究》1984,3(4):104-110
本文对十六世纪以来广东省气候和未来气候趋势进行了初步探讨。  相似文献   

6.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

7.
十八世纪我国长江下游等地区的气候   总被引:9,自引:1,他引:8  
关于1500-1900年小冰期气候问题是历史时期气候变化研究中的一个重要课题.本文根据我国晴雨录、古代天气日记、诗文等历史文献资料来讨论小冰期中一个相对温暖时期(十八世纪)的气候.研究表明,这个时期冬季(12-2月)平均气温比现在低1.0℃(杭州、苏州)到1.5℃(南京).但其间还有10年以上时间尺度的起伏波动,在温暖时段,冬季平均气温仍比现在低0.5-1.6℃,在寒冷时段,冬季平均气温比现在低2.1-2.4℃.但十八世纪大部分时期春季反比现在暖些.对湿润状况分析表明,十八世纪长江中下游地区比现代潮湿,反映了当时大气环流与今有较大差别.杭州古风向记录(1723-1769年)分析表明,当时盛行风向与现在不同:冬季西北风频率比现在多,春秋盛行东北风时间比现在长,频率比现在多.  相似文献   

8.
The service seNorge ( http://senorge.no ) provides gridded temperature and precipitation for mainland Norway. The products are provided as interpolated station measurements on a 1 × 1 km grid. Precipitation gauges are predominantly located at lower elevations such as coastal areas and valleys. Therefore, there are large uncertainties in extrapolating precipitation data to higher altitudes, both due to sparsity of observations as well as the large spatial variability of precipitation in mountainous regions. Using gridded temperature and precipitation data from seNorge, surface mass balance was modeled for five Norwegian glaciers of different size and climate conditions. The model accounts for melting of snow and ice by applying a degree‐day approach and considers refreezing assuming a snow depth depended storage. Calculated values are compared to point measurements of glacier winter mass balance. On average for each glacier, modeled and measured surface mass‐balance evolutions agree well, but results at individual stake locations show large variability. Two types of problems were identified: first, grid data were not able to capture spatial mass balance variability at smaller glaciers. Second, a significant increase in the bias between model and observations with altitude for one glacier suggested that orographic enhancement of precipitation was not appropriately captured by the gridded interpolation.  相似文献   

9.
The Taillon Glacier in the French Pyrénées offers one of the most detailed records of recent glacier fluctuations in the region. A comprehensive collection of early maps, paintings, and photographs, together with short-term measurements relating to the ice margins and glacier behavior, have made possible a full reconstruction of the glacier's history since the end of the 19th century. The general pattern of ice-front retreat has been punctuated by a series of significant local readvances, dated 1886–1890, 1906–1911, 1926–1928, 1945, and 1964. The record is compared with the more detailed histories of glaciers from the Alps, and signals a surprising degree of sensitivity for the Taillon Glacier, given its overall size and state of survival. [Key words: Taillon Glacier, Pyrénées, Little Ice Age, glaciology.]  相似文献   

10.
THE 'LITTLE ICE AGE': RE-EVALUATION OF AN EVOLVING CONCEPT   总被引:4,自引:0,他引:4  
ABSTRACT. This review focuses on the development of the ‘Little Ice Age’ as a glaciological and climatic concept, and evaluates its current usefulness in the light of new data on the glacier and climatic variations of the last millennium and of the Holocene. ‘Little Ice Age’ glacierization occurred over about 650 years and can be defined most precisely in the European Alps (c. AD 1300–1950) when extended glaciers were larger than before or since. ‘Little Ice Age’ climate is defined as a shorter time interval of about 330 years (c. AD 1570–1900) when Northern Hemisphere summer temperatures (land areas north of 20°N) fell significantly below the AD 1961–1990 mean. This climatic definition overlaps the times when the Alpine glaciers attained their latest two highstands (AD 1650 and 1850). It is emphasized, however, that ‘Little Ice Age’ glacierization was highly dependent on winter precipitation and that ‘Little Ice Age’ climate was not simply a matter of summer temperatures. Both the glacier‐centred and the climate‐centred concepts necessarily encompass considerable spatial and temporal variability, which are investigated using maps of mean summer temperature variations over the Northern Hemisphere at 30‐year intervals from AD 1571 to 1900. ‘Little Ice Age’‐type events occurred earlier in the Holocene as exemplified by at least seven glacier expansion episodes that have been identified in southern Norway. Such events provide a broader context and renewed relevance for the ‘Little Ice Age’, which may be viewed as a ‘modern analogue’ for the earlier events; and the likelihood that similar events will occur in the future has implications for climatic change in the twenty‐first century. It is concluded that the concept of a ‘Little Ice Age’ will remain useful only by (1) continuing to incorporate the temporal and spatial complexities of glacier and climatic variations as they become better known, and (2) by reflecting improved understanding of the Earth‐atmosphere‐ocean system and its forcing factors through the interaction of palaeoclimatic reconstruction with climate modelling.  相似文献   

11.
Long‐term observations of partly debris‐covered glaciers have allowed us to assess the impact of supra‐glacial debris on volumetric changes. In this paper, the behaviour of the partially debris‐covered, 3.6 km2 tongue of Pasterze Glacier (47°05′N, 12°44′E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra‐glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964–2000 three digital elevation models (1964, 1981, 2000) and related debris‐cover distributions were analysed. These datasets were compared with long‐term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964–1981 and 1981–2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra‐glacial debris, direct solar radiation, counter‐radiation from the valley sides and their changes over time. The downward‐increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30–35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra‐glacial debris on mass balance and glacier tongue morphology.  相似文献   

12.
近400年来北极地区和中国气温变化的对比研究   总被引:12,自引:0,他引:12  
陈玲  张青松  朱立平  王国 《地理研究》2000,19(4):344-350
对中国和北极地区近400年来的气温变化进行了趋势分析和谱特征分析,通过对比认为,北极地区及中国基本上都有17世纪、19世纪两个寒冷期和18世纪、20世纪两个温暖期,在一定程度上说明了气候变化的全球性,但两地区气温的冷暖转化不同步。中国大部分地区(除华东、新疆、西藏区外)17、19世纪升温开始得较北极早;北极地区绝大部分站点18世纪升温较中国明显,且气温变化的区域差异较大。400aBP以来两地气温变化的周期较为一致,以130~140年、100年、80年的周期为主,说明400aBP以来气温的变化具有全球性,而且气温的变化受太阳活动的影响较大,自然因素尤其是太阳活动的影响是气候变化的主要原因。  相似文献   

13.
This study documents thinning and retreat of the South Greenland ice margin and discusses possible reasons in the light of mass‐balance and change of dynamic conditions. Analyses of satellite images have shown that the glacier tongue of Sermilik glacier disintegrated within the past 15 years. Furthermore, the observed thinning close to the Sermilik glacier front was as much as 120 m water equivalent during this period. This figure was derived by comparing surface elevation data from a digital elevation model (1985) and laser altimeter measurements from the year 2000, showing surface elevation changes along a flow line of Sermilik glacier. Mass‐balance data from in situ measurements performed at a centre flow line of the glacier are presented. These data are compared to results from remote sensing analyses of the study area. Net ablation reconstruction over the last 41 years from positive‐degree‐day modelling, at various locations along the Sermilik glacier massbalance transect, shows an increase during the past decades. These analyses indicate that only 55% of the total thinning in this area can be explained by mass‐balance changes. The remaining 45% of the thinning is attributed to changes in the dynamic behaviour of the glacier, such as an increase of creep towards the end of the twentieth century. The significant thinning along the Qagssimiut lobe can also be explained as a combination of mass‐balance changes and changes in ice dynamic behaviour.  相似文献   

14.
ABSTRACT

The advance and retreat of glaciers, influenced by changes of local and regional climates, can result in dramatic landscape changes. The article, which follows up previous documentation of long-term studies at Svartisen, deals with changes of Flatisen: at the end of the 19th century, this was one of the largest glaciers of West Svartisen, and was supplied by accumulation areas that rose to > 1400 m a.s.l. It crossed the river Glomåga and ascended to 100 m above the valley floor. The river had a subglacial course until the 1920s. A proglacial lake, formed in front of the glacier in the 1930s and became larger throughout the rest of the 20th century. Changes of Flatisen between 1957 and 1990 were monitored during visits to the glacier. After the retreating front became inaccessible by land, photographs were taken. Early this century, the glacier retreated from the lake. A helicopter reconnaissance in July 2017 revealed that the surface was almost wholly below 1000 m a.s.l., the local equilibrium line altitude of recent years. Without a permanent accumulation zone, Flatisen is likely to disappear within the first half of the present century.  相似文献   

15.
气候变化和人类活动对塔里木盆地绿洲演化的影响   总被引:17,自引:4,他引:13  
张宏  樊自立 《中国沙漠》1998,18(4):308-313
通过对不同时间尺度下气候变化和人类活动对塔里木盆地绿洲形成与演化的影响分析。认为水文状况的变化是决定绿洲演化的首要因素,气候变化与人类活动也正是通过直接或间接地对绿洲水文状况产生影响而导致绿洲演化的。人类活动对绿洲演化的影响是局部的、阶段性的,而气候变化对绿洲演化的影响则是宏观的、连续性的。  相似文献   

16.
On Rates and Acceleration Trends of Global Glacier Mass Changes   总被引:4,自引:0,他引:4  
Worldwide glacier mass changes are considered to represent natural key variables within global climate-related monitoring programmes, especially with respect to strategies concerning early detection of enhanced greenhouse effects on climate. This is due to the fact that glacier mass changes provide important quantitative information on rates of change, acceleration tendencies and pre-industrial variability relating to energy exchange at the earth/athmosphere interface. During the coming decades, excess radiation income and sensible heat (a few watts per square metre) as calculated with numerical climate models are both estimated to increase by a factor of about two to four as compared to the mean of the 20th century. The rate of average annual mass loss (a few decimetres per year) measured today on mountain glaciers in various parts of the world now appears to accelerate accordingly, even though detailed interpretation of the complex processes involved remains difficult. Within the framework of secular glacier retreat and Holocene glacier fluctuations, similar rates of change and acceleration must have taken place before, i.e. during times of weak anthropogenic forcing. However, the anthropogenic influences on the atmosphere could now and for the first time represent a major contributing factor to the observed glacier shrinkage at a global scale. Problems with such assessments mainly concern aspects of statistical averaging, regional climate variability, strong differences in glacier sensitivity and relations between mass balance and cumulative glacier length change over decadal to secular time scales. Considerable progress has recently been achieved in these fields of research.  相似文献   

17.
长江源区是青藏高原内部山地冰川集中分布的地区之一 ,其冰川储量都占长江流域冰川总量的一半以上。近几十年以来由于受全球气候变化的影响 ,长江源区气候呈暖干化的倾向 ,大多数冰川呈退缩状态 ,这对长江源区的生态环境产生深刻的影响 ,进而危及整个长江流域的生态安全。用英国Hadley气候预测与研究中心的GCM模型HADCM2预测长江源区未来的气候情景 ,结果显示在不同的实验条件下 ,气候都将由现在的暖干化趋势向暖湿化方向转变。通过建立长江源区对气候变化的响应模型 ,用来预测在未来气候情景下冰川变化的趋势 ,预计在本世纪的不同时期冰川零平衡线 (雪线 )将上升 16~ 5 0m。  相似文献   

18.
南宋以来太湖流域大涝大旱及近期趋势估计   总被引:1,自引:0,他引:1  
陈家其 《地理研究》1987,6(1):43-52
本文研究南宋以来太湖地区大旱大涝并对近期大旱大涝趋势作了估计。  相似文献   

19.
1736~1999年西安与汉中地区年冬季平均气温序列重建   总被引:10,自引:3,他引:7  
基于现代气象资料所建立的西安、汉中地区冬季降雪天数与年冬季平均气温之间的相关关系,根据清代档案所记载的西安与汉中地区冬季降雪日数,恢复了西安与汉中地区1736~1910年的年冬季平均气温,重建了1736~1999年西安与汉中地区年冬季平均气温序列。序列分析表明,这两个地区年冬季平均气温变化趋势一致:18世纪和20世纪为暖期,19世纪为冷期,且20世纪的增暖趋势明显。与利用树轮重建的镇安初春(3~4月)温度序列对比分析表明:西安、汉中地区冬季平均气温与镇安初春温度的低频变化趋势基本一致,但镇安较西安与汉中有明显的位相提前。  相似文献   

20.
自1997年以来,乌鲁木齐河源1号冰川消融极为强烈,物质平衡呈大幅度亏损,连续12 a都处于强负平衡状态,平均物质平衡达-708 mm,且在2008年物质平衡达到历史最低值-999 mm,然而2009年出现了物质正平衡,物质平衡63 mm,年际变化量达1 062 mm。以2008-2009年物质平衡实测资料为基础,根据该地区的气温和降水资料分析,结果表明,造成这种现象的主要原因是夏季气温(5~8月)的降低,较2008年低1.8℃,致使冰川消融期的开始时间推迟至了7月份,结束时间提前到8月份,大大削弱了冰川的消融强度,其次是2005年以来逐渐增多的连续性降水,增加了冰川的积累量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号