首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guido Visconti 《Icarus》1981,45(3):638-652
We present computations of the photodissociation coefficients for NH3, N2H4, PH3, and H2S in the Jupiter atmosphere. The calculations take into account multiple scattering and absorption using the radiative-transfer method known as δ-Eddington approximation. The atmospheric models include two cloud layers of variable thickness and haze layers above the upper cloud and between the clouds. One of the results of the radiative computations deal with the reflectivity of the Jovian atmosphere as a function of wavelength. A comparison with available data on the albedo of the planet gives some important indications about mixing ratios and distributions of gases and aerosols. The results for the photolysis rates are compared with similar rates obtained by considering either the direct flux or the flux determined by the molecular gas absorption alone. The latter is usually the approximation used in aeronomic models. The results of this comparison show that a considerable difference exists with direct flux photodissociation but significant differences with molecular absorption flux exist only in atmospheric regions where photodissociation is relatively small.  相似文献   

2.
3.
A number of theories of the formation of the planets advocate that the terrestrial planets were originally of cosmic composition and that it is only subsequent evolution that has removed their volatile components. This paper shows that such protoplanets could have remained in the terrestrial planet region without significant changes occurring in their orbits for an acceptable time interval.  相似文献   

4.
Solar System Research - We consider space expeditions with a long-term spacecraft stay near the studied celestial body (artificial satellites of small bodies of the Solar System), or expeditions...  相似文献   

5.
Orbital resonances tend to force bodies into noncircular orbits. If a body is also under the influence of an eccentricity-reducing medium, it will experience a secular change in semimajor axis which may be positive or negative depending on whether its orbit is exterior or interior to that of the perturbing body. Thus a dissipative medium can promote either a loss or a gain in orbital energy. This process may explain the resonant structure of the asteroid belt and of Saturn's rings. For reasonable early solar system parameters, it would clear a gap near the 2:1 resonance with Jupiter on a time scale of a few thousand years; the gap width would be comparable to the Kirkwood gap presently at the location in the asteroid belt. Similarly, a gap comparable in width to Cassini's division would be cleared in Saturn's rings at the 2:1 resonance with Mimas in ~106 yr. Most of the material from the gap would be deposited at the outer edge of ring B. The process would also affect the radial distribution of preplanetary material. Moreover, it provides an explanation for the large amplitude of the Titan-Hyperion libration. Consideration of the effects of dissipation on orbits near the stable L4 and L5 points of the restricted three-body problem indicates that energy loss causes particles to move away from these points. This results explains the large amplitude of Trojan asteroids about these points and the possible capture of Trojan into orbit about Jupiter.  相似文献   

6.
Kuiper (1972) had suggested that the Great Red Spot (GRS) of Jupiter is a giant hurricane. We present further arguments in support of this idea and propose that it may also apply to the smaller vortices such as the white and brown ovals (barges). Our estimates indicate that the spin-down time-constants for these Jovian vortices are significantly shorter than the observed lifetimes. Thus, the motions must be sustained through the continued release of internal energy. In analogy with the CISK mechanism for the terrestrial hurricane, transport of water vapor, which is observed on Jupiter, may provide the latent energy to fuel the motions. The energy the planet emits must be transported upwards; therefore its troposphere should be convectively unstable. In such an atmosphere, the proposed solar driven meridional circulation is multicellular, of the Ferrel-Thomson type. If the energy transport from the planetary interior is accelerated by the upward motions in the circulation, eastward zonal jets develop such as observed in the equatorial region. But if the upward flow of energy is impeded by the prevailing downward motions in the meridional circulation (which occur, for example, near 20 latitude), we propose that the convective instability is amplified. The conditions then are more favorable for the development of hurricanes which may appear in the form of the GRS and the white and brown ovals. The GRS with its large size and long life time (indicating that it is very deep) is unique, and we suggest that it may have been induced by meteor impact.  相似文献   

7.
Variations in the dynamic parameters of Phobos have been determined after reaching critical value of the semi-major axis = 7247 km at which zero-gravity on the surface of Phobos near the equator will take place. The rate of the variations will increase significantly, e.g., in the tidal energy dissipation by one order in magnitude. The total dissipated mechanical energy during the whole tidal history of the system has been estimated as -5.5 × 1021 kg m2 s-2, the total decrease in the second zonal Stokes parameter of Phobos as -6.6 × 10-2.  相似文献   

8.
We consider the secular evolution of the orbits of bodies in the Outer Solar System under the perturbations of the jovian planets assumed on coplanar and circular orbits. Through the approach used for asteroidal belt by Yoshihide Kozai in 1962, we obtain that the Kozai resonance do not affect the behavior of bodies belonging to the Kuiper belt but concerns the long-timescale evolution of long-period comets. In particular this resonance appears as a process contributing to produce Sun-grazer comets.  相似文献   

9.
(903) Nealley moves on an orbit of low eccentricity with a mean motion that is slightly larger than the 2/1 value of resonance. This orbit and some related fictious orbits are studied by numerical integrations of the four-body problem Sun-Jupiter-Saturn-asteroid over an interval of 110000 yr. The author's experience on related cases of resonance allows a study of the variation of suitably defined orbital parameters. The long-term evolution of the orbits is compared with earlier predictions. Some of the librating orbits are temporarily captured in a secondary resonance that refers to three-dimensional motion and is demonstrated by a special example.  相似文献   

10.
The Helios 1 spacecraft was launched in December 1974 into a heliocentric orbit of 0.3 AU perihelion distance. Helios 2 followed one year later on a similar orbit. Both spaceprobes carry on board micrometeoroid experiments each of which contains two sensors with a total sensitive area of 121 cm2. To date, only preliminary data are available from Helios 2. Therefore the results presented here mainly apply to data from Helios 1. The ecliptic sensor of Helios 1 measures dust particles which have trajectories with elevations from ?45° to + 55° with respect to the ecliptic plane. The south sensor detects dust particles with trajectory elevations from ?90° (ecliptic south-pole) to ?4°. The ecliptic sensor is covered by a thin film (3000 Å parylene coated with 750 Å aluminium) as protection against solar radiation. The other sensor is shielded by the spacecraft rim from direct sunlight and has an open aperture. Micrometeoroids are detected by the electric charge produced upon impact. During the first 6 orbits of Helios 1 around the sun the experiment registered a total of 168 meteoroids, 52 particles were detected by the ecliptic sensor and 116 particles by the south sensor. This excess of impacts on the south sensor with regard to the impacts on the ecliptic sensor is due predominantly to small impacts which are characterized by small pulse heights of the charge signals. But also large impacts were statistically significantly more abundant on the south sensor than on the ecliptic sensor. Most impacts on the ecliptic sensor were observed when it was pointing in the direction of motion of Helios (apex direction). In contrast to that the south sensor detected most impacts when it was facing in between the solar and antapex direction. Orbit analysis showed that the “apex” particles which are predominantly detected by the ecliptic sensor have eccentricities e < 0.4 or semi-major axes a ? 0.5 AU. From a comparison with corresponding data from the south sensor it is concluded that the average inclination f of “apex” particles is -i < 30°. The excess of impacts on the south sensor, called “eccentric” particles, have orbit eccentricities e > 0.4 and semimajor axes a > 0.5AU. β-meteoroids leaving the solar system on hyperbolic orbits are directly identified by the observed imbalance of outgoing (away from the sun) and ingoing particles. It is shown that “eccentric” particles, due to their orbital characteristics, should be observable also by the ecliptic sensor. Since they have not been detected by this sensor it is concluded that the only instrumental difference between both sensors, i.e. the entrance film in front of the ecliptic sensor, prevented them from entering it. A comparison with penetration studies proved that particles which do not penetrate the entrance film must have bulk densities ρ(g/cm3) below an upper density limit ρmax. It is shown that approximately 30% of the “eccentric” particles have densities below ρmax = 1 g/cm3.  相似文献   

11.
The influence of gas drag and gravitational perturbations by a planetary embryo on the orbit of a planetesimal in the solar nebula was examined. Non-Keplerian rotation of the gas causes secular decay of the orbit. If the planetesimal's orbit is exterior to the perturber's, resonant perturbations oppose this drag and can cause it to be trapped in a stable orbit at a commensurability of order j/(j + 1), where j is an integer. Numerical and analytical demonstrations show that resonant trapping occurs for wide ranges of perturbing mass, planetesimal size, and j. Induced eccentricities are large, causing overlap of orbits for bodies in different resonances with j > 2. Collisions between planetesimals in different resonances, or between resonant and nonresonant bodies, result in their disruption. Fragments smaller than a critical size can pass through resonances under the influence of drag and be accreted by the embryo. This effect speeds accretion and tends to prevent dynamical isolation of planetary embryos, making gas-rich scenarios for planetary formation more plausible.  相似文献   

12.
We consider a horizontally stratified isothermal model of the solar atmosphere, with vertical and uniform B 0, and v A 2 v s 2 . The equations of motion are linearized about a background which is in hydrostatic equilibrium. A homogeneous wave equation results for the motions perpendicular to B 0; this wave equation is similar to the equation for the MHD fast mode. On the other hand, the equation for the parallel motions is inhomogeneous, containing driving terms which arise from the presence of the fast mode; the homogeneous form of this equation is identical to the equation describing vertically-propagating gravity-modified acoustic waves. We demonstrate that a resonance can exist between the (driving) fast wave and the (driven) gravity-modified acoustic wave, in such a way that very large parallel velocities can be driven by small perpendicular velocities. Applications of this resonance to solar spicules, jets, and other phenomena are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
14.
Estimation of solar illumination on the Moon: A theoretical model   总被引:2,自引:0,他引:2  
The solar illumination conditions on the lunar surface represent a key resource with respect to returning to the Moon. As a supplement to mapping the solar illumination by exploring data, lighting simulations using high-resolution topography could produce quantitative illumination maps. In this study, a theoretical model is proposed for estimating the solar illumination conditions. It depends only on the solar altitude and topographical factors. Besides the selenographic longitude and latitude, the former is determined by the selenographic longitude and latitude at the subsolar site, the geocentric ecliptical latitude, and the dimensionless distance of the Sun–Moon relative to 1 AU, which are function of time. The latter is determined by comparing the elevations in solar irradiance direction within 210 km in which the topography might shadow the behind sites to the critical elevations determining whether the behind sites are shadowed or not. Compared to Zuber's model, the model proposed in this study is simpler and easier for computing. It is parameterized with selenographic coordinates, elevations, and time. With high-resolution topography data, the solar illumination conditions at any selenographic coordination could be estimated by this model at any date and time. The lunar surface is illuminated when the solar altitude is non-zero and all the elevations within 210 km in solar irradiance direction are lower than the critical elevations. Otherwise it would be shadowed.  相似文献   

15.
C.D. Murray  K. Fox 《Icarus》1984,59(2):221-233
The motion of asteroids near the 3:1 Jovian resonance in the restricted planar case is studied using three numerical methods: (a) integrating the full equations of motion, (b) integrating the averaged equations of motion, and (c) using an algebraic mapping recently developed by Wisdom (1982, Astron. J.87, 577–593). The relative merits of each method are investigated. It is concluded that in the regular regions of the phase space, methods b and c give excellent agreement with each other and that provided the maximum eccentricity emax < 0.4 differences with the exact solution (method a) are <6% in emax and <27% in the period of the oscillations. The additions of higher order terms in the expansion of the averaged Hamiltonian provides marginally better agreement with the full integration. This is probably due to the slow convergence of the expansion of the disturbing function at large eccentricities (e > 0.3). In chaotic regions of the phase there is little agreement between the orbital elements at any given time calculated by each method. However, all methods reflect the qualitative behavior of the chaotic trajectories and give good agreement on the bounds of the motion. Since the map is at least 200 times faster than solving the full equations of motion it is an efficient method of rapidly exploring accessible regions of the chaotic phase space.  相似文献   

16.
Observations of sodium D-line emission from Io and the magnetosphere of Jupiter are reported. A disk-shaped cloud of sodium is found to exist in the Jovian magnetosphere with an inner edge at about 4R and an outer edge at about 10R . The gravitational scale height above the equatorial plane is a few Jovian radii. The data are interpreted in terms of a sputtering model, in which the sodium required to maintain the cloud is sputtered off the surface of Io by trapped energetic radiation-belt protons. Conditions on the atmospheric density are obtained. The Keplerian orbits attainable by such escaping sputtered atoms can provide the observed spatial distribution. The required 500-keV proton flux required to provide the 1–10 keV protons which will sputter the sodium at the surface of Io is consistent with the limiting trapped flux determined by ion-cyclotron turbulence.Publication No. 1410, Institute of Geophysics and Planetary Physics, University of California, Los Angeles 90024, Cal., U.S.A.  相似文献   

17.
The steady state interaction of the solar wind with the Moon is modeled as a uniform, magnetized, quasi-neutral, collisionless, hypersonic, and hyper-Alfvénic flow of an electronproton plasma past a perfectly ion absorbing, non-magnetized sphere. For the temperature of the electronsT much less than that of the ionsT i , steady state equations are derived self-consistently from the Vlasov and Maxwell equations by taking advantage of the fact that the ion gyration ratio is small compared to the radius of the Moon, by employing an ordering which requires different scale lengths along the magnetic fieldB and center of mass velocity, and by expanding in a small parameter ? that measures the smallness of ?B terms compared to a dominant term retained. A partial numerical solution is presented and discussed for the limit in which ? is much less than β=(ion pressure/magnetic pressure). In addition, a simple technique is presented whereby the steady state equations can be approximately extended to cases in whichT?T i for arbitrary ?/β.  相似文献   

18.
We consider the role of deuterium as a potential marker of location and ambient conditions during the formation of small bodies in our Solar system. We concentrate in particular on the formation of the regular icy satellites of Jupiter and the other giant planets, but include a discussion of the implications for the Trojan asteroids and the irregular satellites. We examine in detail the formation of regular planetary satellites within the paradigm of a circum-Jovian subnebula. Particular attention is paid to the two extreme potential subnebulae—“hot” and “cold”. In particular, we show that, for the case of the “hot” subnebula model, the D:H ratio in water ice measured from the regular satellites would be expected to be near-Solar. In contrast, satellites which formed in a “cold” subnebula would be expected to display a D:H ratio that is distinctly over-Solar. We then compare the results obtained with the enrichment regimes which could be expected for other families of icy small bodies in the outer Solar system—the Trojan asteroids and the irregular satellites. In doing so, we demonstrate how measurements by Laplace, the James Webb Space Telescope, HERSCHEL and ALMA will play an important role in determining the true formation locations and mechanisms of these objects.  相似文献   

19.
J. Henrard 《Icarus》1983,53(1):55-67
C.F. Yoder's scenario 1979 for the capture into resonance of the first three Galilean satellites is reexamined. A more refined dynamical model for the resonance and for the tidal effects is proposed and analyzed. The results agree qualitatively with those of Yoder but differ numerically by 10 to 20%.  相似文献   

20.
The center-of-disk reflectivity of Jupiter in the wavelength range from 1450 to 3150A?has been computed from 30 low-dispersion IUE spectra taken during solar maximum in 1978–1980. A vertically inhomogeneous radiative transfer program is used to compute model reflectivities of various stratospheric compositions for comparison. Ammonia and acetylene are well determined because they show narrow absorption bands in the ultraviolet. Above 1800A?, these two gases provide a good fit to the data, but not below. At shorter wavelengths the fit would be much improved by a small amount (5–15 ppb) of propadiene/allene (C3H4). Voyager IRIS spectra show that the IR bands of allene are not strong enough to be detected in such a small amount. Additional absorption around 1600A?can be reproduced best with the presence of cyclopropane (C3H6, <15ppb), although other absorbers (e.g., hydrocarbon molecules with more than three carbon atoms, oxygen- or nitrogen-containing molecules, or a high-attitude haze) could also explain the spectrum in this region. The data are too noisy to detect possible CO Cameron band absorption near 2000A?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号