首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As GPS is modernizing, there are currently fourteen satellites transmitting L2C civil code and seven satellites transmitting L5 signal. While the GPS observables are subject to several sources of errors, the ionosphere is one of the largest error sources affecting GPS signals. Small irregularities in the electrons density along the GPS radio signal propagation path cause ionospheric scintillation that is characterized by rapid fluctuations in the signal amplitude and phase. The ionospheric scintillation effects are stronger in equatorial and high-latitude geomagnetic latitude regions and occur mainly due to equatorial anomaly and solar storms. Several researchers have analyzed the L2C signal quality since becoming available in December, 2005. We analyze the performance of L2C using GPS data from stations in the equatorial region of Brazil, which is subject of weak, moderate and strong ionospheric scintillation conditions. The GPS data were collected by Septentrio PolaRxS–PRO receivers as part of the CIGALA/CALIBRA network. The analysis was performed as a function of scintillations indexes S4 and Phi60, lock time (time interval in seconds that the carrier phase is tracked continuously without cycle slips), multipath RMS and position variation of precise point positioning solutions. The analysis shows that L2C code solutions are less affected by multipath effects than that of P2 when data are collected under weak ionospheric scintillation effects. In terms of analysis of positions, the kinematic PPP results using L2C instead P2 codes show accuracy improvements up to 33 % in periods of weak or strong ionospheric scintillation. When combining phase and code collected under weak scintillation effects, the results by applying L2C against P2 provide improvement in accuracy up to 59 %. However, for data under strong scintillation effects, the use of L2C for PPP with code and phase does not provide improvements in the positioning accuracy.  相似文献   

2.
3.
Ionospheric effects on relative positioning within a dense GPS network   总被引:4,自引:2,他引:2  
Local variability in total electron content can seriously affect the accuracy of GNSS real-time applications. We have developed software to compute the positioning error due to the ionosphere for all baselines of the Belgian GPS network, called the Active Geodetic Network (AGN). In a first step, a reference day has been chosen to validate the methodology by comparing results with the nominal accuracy of relative positioning at centimeter level. Then, the effects of two types of ionospheric disturbances on the positioning error have been analyzed: (1) Traveling ionospheric disturbances (TIDs) and (2) noise-like variability due to geomagnetic storms. The influence of baseline length on positioning error has been analyzed for these three cases. The analysis shows that geomagnetic storms induce the largest positioning error (more than 2 m for a 20 km baseline) and that the positioning error depends on the baseline orientation. Baselines oriented parallel to the propagation direction of the ionospheric disturbances are more affected than others. The positioning error due to ionospheric small-scale structures can be so identified by our method, which is not always the case with the modern ionosphere mitigation techniques. In the future, this ionospheric impact formulation could be considered in the development of an integrity monitoring service for GNSS relative positioning users.  相似文献   

4.
Medium-scale traveling ionospheric disturbances (MSTID) are wave-like perturbations of the ionospheric plasma with wavelengths of several hundred kilometres and velocities of several hundred metres per second. MSTID is one of the most common ionospheric phenomena that generally induce the perturbations of ionospheric total electron content (TEC) by ∼1016 electron/m2, which corresponds to ∼54 ns (16.2 cm) delay at GPS L1 signal. In the past decade, several new characteristics on MSTIDs have been revealed by the TEC observations using the dense GPS receiver network in Japan. In this paper, we provide a short review of these new observations and summarize the morphological characteristics of MSTIDs in Japan.  相似文献   

5.
基于青岛站2000年8月至2006年4月间半个太阳活动周的GPS和测高仪的同步观测,提取期间的电离层TEC和f_oF_2的小时观测数据,联合分析该地区电离层板厚的日变化、季节变化和随太阳活动变化,研究表明青岛地区电离层板厚在日出前时段出现明显的增强峰,并随季节和太阳活动呈现出较复杂的变化关系.利用板厚的相对偏差,探讨了电离层板厚扰动变化分布特征.  相似文献   

6.
The critical frequency of ionospheric F2 layer (foF2) is a measure of the highest frequency of radio signal that may be reflected back by the F2 layer, and it is associated with ionospheric peak electron density in the F2 layer. Accurate long-term foF2 variations are usually derived from ionosonde observations. In this paper, we propose a new method to observe foF2 using a stand-alone global positioning system (GPS) receiver. The proposed method relies on the mathematical equation that relates foF2 to GPS observations. The equation is then implemented in the Kalman filter algorithm to estimate foF2 at every epoch of the observation (30-s rate). Unlike existing methods, the proposed method does not require any additional information from ionosonde observations and does not require any network of GPS receivers. It only requires as inputs the ionospheric scale height and the modeled plasmaspheric electron content, which practically can be derived from any existing ionospheric/plasmaspheric model. We applied the proposed method to estimate long-term variations of foF2 at three GPS stations located at the northern hemisphere (NICO, Cyprus), the southern hemisphere (STR1, Australia) and the south pole (SYOG, Antarctic). To assess the performance of the proposed method, we then compared the results against those derived by ionosonde observations and the International Reference Ionosphere (IRI) 2012 model. We found that, during the period of high solar activity (2011–2012), the values of absolute mean bias between foF2 derived by the proposed method and ionosonde observations are in the range of 0.2–0.5 MHz, while those during the period of low solar activity (2009–2010) are in the range of 0.05–0.15 MHz. Furthermore, the root-mean-square-error (RMSE) values during high and low solar activities are in the range of 0.8–0.9 MHz and of 0.6–0.7 MHz, respectively. We also noticed that the values of absolute mean bias and RMSE between foF2 derived by the proposed method and the IRI-2012 model are slightly larger than those between the proposed method and ionosonde observations. These results demonstrate that the proposed method can estimate foF2 with a comparable accuracy. Since the proposed method can estimate foF2 at every epoch of the observation, it therefore has promising applications for investigating various scales (from small to large) of foF2 irregularities.  相似文献   

7.
A local mechanism for strong ionospheric effects on radio occultation (RO) global positioning satellite system (GPS) signals is described. Peculiar zones centered at the critical points (the tangent points) in the ionosphere, where the gradient of the electron density is perpendicular to the RO ray trajectory, strongly influence the amplitude and phase of RO signals. It follows from the analytical model of local ionospheric effects that the positions of the critical points depend on the RO geometry and the structure of the ionospheric disturbances. Centers of strong ionospheric influence on RO signals can exist, for example, in the sporadic E-layers, which are inclined by 3–6° relative to the local horizontal direction. Also, intense F2 layer irregularities can contribute to the RO signal variations. A classification of the ionospheric influence on the GPS RO signals is introduced using the amplitude data, which indicates different mechanisms (local, diffraction, etc.) for radio waves propagation. The existence of regular mechanisms (e.g., local mechanism) indicates a potential for separating the regular and random parts in the ionospheric influence on the RO signals.  相似文献   

8.
为了减弱BDS-3/GPS基准站数据处理中电离层延迟的影响,从而提高基准站坐标解算精度,采用BDS-3/GPS双频载波无电离层线性组合消除电离层延迟一阶项的影响,并引入全球垂直总电子含量VTEC文件削弱电离层延迟高阶项的影响.通过设计对比实验对24个MGEX基准站进行解算,分析了BDS-3和GPS解算过程中电离层延迟高...  相似文献   

9.
袁运斌  欧吉坤 《测绘学报》1999,28(2):110-114
本文通过设计不同的计算方案详细分析了GPS观测中的仪器偏差对确定电离层延迟的影响,利用多天实测数据,结合仪器偏差与电离层延迟的分离方法,探讨了仪器偏差的稳定性,并提出了一种静态确定电离层延迟的方案。算例表明它能有效克服仪器偏差影响。  相似文献   

10.
In precise point positioning (PPP), the ionospheric delay is corrected in a first-order approximation from GPS dual-frequency observations, which should eliminate almost completely the ionosphere as a source of error. However, sudden plasma density variations can adversely affect the GPS signal, degrading accuracy and reliability of positioning techniques. The occurrence of plasma density irregularities is frequent at equatorial latitudes and is reflected in large total electron content (TEC) variations. We study the relation between large changes in the rate of TEC (ROT) and positioning errors in single-epoch PPP. At equatorial latitudes and during post-sunset hours, the estimated altitudes contain errors of several meters for a single-epoch position determination, and latitude and longitude estimates are also degraded. These results have been corroborated by the online CSRS-PPP (NRCan) program. Moreover, abrupt changes in the satellite geometry have been discarded as possible cause of such errors, suggesting an apparent relation between the occurrence of large ROT and degraded position estimates.  相似文献   

11.
A statistical study of the occurrence characteristic of GPS ionospheric scintillation and irregularity in the polar latitude is presented. These measurements were made at Ny-Alesund, Svalbard [78.9°N, 11.9°E; 75.8°N corrected geomagnetic latitude (CGMLat)] and Larsemann Hills, East Antarctica (69.4°S, 76.4°E; 74.6°S CGMLat) during 2007–2008. It is found that the GPS phase scintillation and irregularity activity mainly takes place in the months 10, 11 and 12 at Ny-Alesund, and in the months 5, 6 at Larsemann Hills. The seasonal pattern of phase scintillation with respect to the station indicates that the GPS phase scintillation occurrence is a local winter phenomenon, which shows consistent results with past studies of 250 MHz satellite beacon measurements. The occurrence rates of GPS amplitude scintillation at the two stations are below 1%. A comparison with the interplanetary magnetic field (IMF) B y and B z components shows that the phase scintillation occurrence level is higher during the period from later afternoon to sunset (16–19 h) at Ny-Alesund, and from sunset to pre-midnight (18–23 h) at Larsemann Hills for negative IMF components. The findings seem to indicate that the dependence of scintillation and irregularity occurrence on geomagnetic activity appears to be associated with the magnetic local time (MLT).  相似文献   

12.
13.
周强波 《测绘工程》2021,30(4):9-13
为了建立更高精度的电离层T EC预报模型,利用IGS数据中心提供的平静期与磁暴期电离层T EC原始序列,提出基于奇异谱分析法(SSA)与Elman神经网络结合的电离层T EC预报模型.实验结果表明,在电离层平静期T EC的预报精度上,SSA-Elman组合模型的精度更加稳定,预测残差值在2 T ECu以内;在电离层磁暴...  相似文献   

14.
Using dual-frequency data from 36 GPS stations from the EUREF Permanent Network (EPN), the influence of the October 30, 2003 Halloween geomagnetic storm on kinematic GPS positioning is investigated. The Halloween storm induced ionospheric disturbances above the northern part of Europe and Scandinavia. It is shown that kinematic position repeatabilities for this period are mainly affected for stations in northern Europe with outliers reaching 12 cm in the horizontal, and 26 cm in the vertical. These magnitudes are shown to be possibly due to the second-order ionospheric delays on GPS signals, not accounted for in the kinematic GPS positioning analysis performed. In parallel, we generate hourly TEC (Total Electron Content) maps on a 1° × 1° grid using the dense EPN network. These TEC maps do not use any interpolation but provide a high resolution in the time and space and therefore allow to better evidence small structures in the ionosphere than the classical 2-hourly 2.5° × 5° grid Global Ionospheric TEC Maps (GIM). Using the hourly 1° × 1° TEC maps, we reconstruct and refine exactly the zones of intense ionosphere activity during the storm, and we show the correlation between the ionospheric activity and assess the quality of GPS-based kinematic positioning performed in the European region.  相似文献   

15.
针对网络RTK基线过长时电离层延迟的相关性就会减弱的问题,本文提出了一种长距离网络RTK区域电离延迟改正模型。首先利用已知载波值和确定的非差参考模糊度计算基准站的电离层延迟,进而传播至流动站,最后内插计算流动站电离层延迟,得到电离层延迟改正。通过实测CORS数据进行验证,结果表明,该算法可使长距离网络RTK达到厘米级精度的定位结果。  相似文献   

16.
Effects of ionospheric disturbances on GPS observation in low latitude area   总被引:4,自引:2,他引:4  
In this paper, ionospheric disturbance data from a local GPS network in Hong Kong (low latitude region) are studied in the solar maximum period (2001–2003). The spatial and temporal distributions of the disturbances in Hong Kong are investigated. It is found that strong ionospheric disturbances occur frequently during the solar maximum period, particularly around March and September, and concentrate at the region around geographic latitude 22°N (geomagnetic latitude 12°N). The effects of the disturbances on GPS geodetic receivers, such as loss of lock and measurement noise level, are also analyzed for the 3-year period. It shows that the measurement noise level and the number of losses of lock in GPS data increase dramatically during ionospheric disturbance periods. The behaviors of different types of GPS receivers during the disturbances are also compared.  相似文献   

17.
Analysis of long-range network RTK during a severe ionospheric storm   总被引:3,自引:0,他引:3  
The network-based GPS technique provides a broad spectrum of corrections to support RTK (real-time kinematic) surveying and geodetic applications. The most important among them are the ionospheric corrections generated in the reference network. The accuracy of these corrections depends upon the ionospheric conditions and may not always be sufficient to support ambiguity resolution (AR), and hence accurate GPS positioning. This paper presents the analyses of the network-derived ionospheric correction accuracy under extremely varying – quiet and stormy – geomagnetic and ionospheric conditions. In addition, the influence of the correction accuracy on the instantaneous (single-epoch) and on-the-fly (OTF) AR in long-range RTK GPS positioning is investigated, and the results, based on post-processed GPS data, are provided. The network used here to generate the ionospheric corrections consists of three permanent stations selected from the Ohio Continuously Operating Reference Stations (CORS) network. The average separation between the reference stations was ∼200 km and the test baseline was 121 km long. The results show that, during the severe ionospheric storm, the correction accuracy deteriorates to the point when the instantaneous AR is no longer possible, and the OTF AR requires much more time to fix the integers. The analyses presented here also outline the importance of the correct selection of the stochastic constraints in the rover solution applied to the network-derived ionospheric corrections.  相似文献   

18.
The ionospheric delay is the main source of error for single-point single-epoch (SPSE) GPS positioning when using single-frequency receivers. In contrast to the common slant approach, in this article we focus on its effect in final coordinates through the study of bias propagation in SPSE positioning: we first show an analytical resolution for the propagation problem with highly symmetric satellite configurations. To overcome some of the disadvantages of this first method, we use Santerre’s technique and, finally, present a new numerical methodology that allows us to generalize for a real geometry and obtain an average ionospheric positioning error over a given site. From the results obtained, four working hypotheses that relate the ionospheric shape above the receiver with final position errors are presented and tested. These four hypotheses, which agree with average ionospheric positioning error in 95% of the studied cases, can be related to the construction of the design matrix. Finally, these hypotheses have been used to address a situation where the ionospheric delay is corrected with an ionospheric model.  相似文献   

19.
刘艳春 《测绘通报》2020,(11):116-119+123
本文对FJCORS基准站定位误差序列进行了分析,发现观测误差呈明显的季节性变化,峰值出现在7月,同时分析了定位误差与电离层VTEC和气象要素的关系。结果表明,定位误差与VTEC不相关,而与气象要素存在较强的相关性,气压降低或气温、水汽压升高直接导致误差呈线性增加。  相似文献   

20.
崔书珍  周金国  彭军还 《测绘科学》2009,34(5):55-56,234
本文利用VTEC(the Vertical Total Electron Contents)增量和VTEC变化率分析了电离层在2003年10月28日太阳耀斑期间中国的四个IGS跟踪站的响应情况.通过分析比较说明用VTEC变化率似更适合探测电离层对太阳耀斑的响应,并有望发现耀斑期间电离层的一些扰动现象,但在能得到高精度的绝对离层延迟的情况下,利用VTEC增量能准确全面地反映电离层对耀斑响应的整体变化情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号