首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted multi-proxy geochemical analyses (including measurements of organic carbon, nitrogen and sulphur stable isotope composition, and carbonate carbon and oxygen isotope composition) on a 13.5 m sediment core from Lake Bliden, Denmark, which provide a record of shifting hydrological conditions for the past 6,700 years. The early part of the stratigraphic record (6,700–5,740 cal year BP) was wet, based on δ18Ocarb and lithology, and corresponds to the Holocene Thermal Maximum. Shifts in primarily δ18Ocarb indicate dry conditions prevailed from 5,740 to 2,800 cal year BP, although this was interrupted by very wet conditions from 5,300 to 5,150, 4,300 to 4,050 and 3,700 to 3,450 cal year BP. The timing of the latter two moist intervals is consistent with other Scandinavian paleoclimatic records. Dry conditions at Lake Bliden between 3,450 and 2,800 cal year BP is consistent with other paleolimnological records from southern Sweden but contrasts with records in central Sweden, possibly suggesting a more northerly trajectory of prevailing westerlies carrying moisture from the North Atlantic at this time. Overall, fluctuating moisture conditions at Lake Bliden appear to be strongly linked to changing sea surface temperatures in the Greenland, Iceland and Norwegian seas. After 2,800 cal year BP, sedimentology, magnetic susceptibility, δ13CORG, δ13Ccarb and δ18Ocarb indicate a major reduction on water level, which caused the depositional setting at the coring site to shift from the profundal to littoral zone. The Roman Warm Period (2,200–1,500 cal year BP) appears dry based on enriched δ18Ocarb values. Possible effects of human disturbance in the watershed after 820 cal year BP complicate attempts to interpret the stratigraphic record although tentative interpretation of the δ18Ocarb, magnetic susceptibility, δ13CORG, δ13Ccarb and δ18Ocarb records suggest that the Medieval Warm Period was dry and the Little Ice Age was wet.  相似文献   

2.
Sedimentological, mineralogical and compositional analyses performed on short gravity cores and long Kullenberg cores from meromictic Montcortès Lake (Pre-Pyrenean Range, NE Spain) reveal large depositional changes during the last 6,000 cal years. The limnological characteristics of this karstic lake, including its meromictic nature, relatively high surface area/depth ratio (surface area ~0.1 km2; z max = 30 m), and steep margins, facilitated deposition and preservation of finely laminated facies, punctuated by clastic layers corresponding to turbidite events. The robust age model is based on 17 AMS 14C dates. Slope instability caused large gravitational deposits during the middle Holocene, prior to 6 ka BP, and in the late Holocene, prior to 1,600 and 1,000 cal yr BP). Relatively shallower lake conditions prevailed during the middle Holocene (6,000–3,500 cal years BP). Afterwards, deeper environments dominated, with deposition of varves containing preserved calcite laminae. Increased carbonate production and lower clastic input occurred during the Iberian-Roman Period, the Little Ice Age, and the twentieth century. Although modulated by climate variability, changes in sediment delivery to the lake reflect modifications of agricultural practices and population pressure in the watershed. Two episodes of higher clastic input to the lake have been identified: 1) 690–1460 AD, coinciding with an increase in farming activity in the area and the Medieval Climate Anomaly, and 2) 1770–1950 AD, including the last phase of the Little Ice Age and the maximum human occupation in late nineteenth and early twentieth centuries.  相似文献   

3.
We recovered a sediment core (DL04) from the depocenter of Dali Lake in central-eastern Inner Mongolia. The upper 8.5 m were analyzed at 1-cm intervals for grain-size distribution to partition the grain-size components and provide a high-resolution proxy record of Holocene lake level changes. Partitioning of three to six components, C1, C2, C3 through C6 from fine to coarse modes within the individual polymodal distributions, into overlapping lognormal distributions, was accomplished utilizing the method of lognormal distribution function fitting. Genetic analyses of the grain-size components suggest that two major components, C2 and C3, interpreted as offshore-suspension fine and medium-to-coarse silt, can serve as sediment proxies for past changes in the level of Dali Lake. Lower modal sizes of both C2 and C3 and greater C3 and lower C2 percentages reflect higher lake stands. The proxy data from DL04 core sediments span the last 12,000 years and indicate that Dali Lake experienced five stages during the Holocene. During the interval ca. 11,500–9,800 cal year BP, lake level was unstable, with drastic rises and falls. Following that interval, the lake level was marked by high stands between ca. 9,800 and 7,100 cal year BP. During the period from ca. 7,100 to 3,650 cal year BP, lake level maintained generally low stands, but displayed a slight tendency to rise. Subsequently, the lake level continued rising, but exhibited high-frequency, high-amplitude fluctuations until ca. 1,800 cal years ago. Since ca. 1,800 cal year BP, the lake has displayed a gradual lowering trend with frequent fluctuations.  相似文献   

4.
Two cores were recovered from raised peat bogs on the tropical northern Leizhou Peninsula, south China. Multiple sediment variables including organic matter (OM) content, the stable carbon isotope signature of OM, low-frequency magnetic susceptibility and degree of humification, indicate that the regional paleoclimate played an important role in determining the nature of peat that accumulated. Based on comparison with other climate proxies, the bulk peat δ13C record was interpreted as an indicator of variation in the East Asian (EA) summer monsoon, and to a lesser extent, the Indian summer monsoon, during the last glacial period between ~49 and 10 cal ka BP. More negative bulk δ13C values reflect wetter and warmer conditions, and thus a strong EA summer monsoon. More positive values indicate drier and cooler conditions. A warm and wet period occurred between ~46 and 28 cal ka BP, implying a strengthening of the EA summer monsoon. A climate shift occurred at ~22 cal ka BP and the driest and coldest period appeared between ~19 and 16 cal ka BP, suggesting weakening of the EA summer monsoon. After ~12 cal ka BP, climate shifted towards wetter and warmer conditions again. It has been suggested that variations in orbitally induced solar insolation played a role in the last glacial climate of the study region. Several millennial—scale arid and cold phases characterized by C4 plants, or by more positive δ13C values during periods when C3 plants dominated, show agreement with the Greenland GISP2 ice core and the Chinese stalagmite records. Interactions between high northern latitude cold air advection and summer moisture transported across the tropical ocean, and the migration of the mean position of the Intertropical Convergence Zone (ITCZ) would have favored these millennial–scale phases. Additionally, changes in heat transport to the North Atlantic would also have influenced climate in the region.  相似文献   

5.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

6.
Millennial-scale climate variability has not been well documented in arid northwest China due to the scarcity of high-resolution, well-dated paleoclimate records. Here we present multi-proxy records from sediment cores taken in freshwater Hurleg Lake on the northeastern Tibetan Plateau, which reveal millennial-scale lake-level and climate variations over the past 8,000 years. This high-elevation region is very sensitive to large-scale climate change, thus allowing us to better understand Holocene climate variations in East Asia. The lake-level record, derived from lithology, magnetic mineralogy, carbonate isotopes, ostracode shell isotopes and trace elements, X-ray fluorescence (XRF), and gray scale data, indicates a highly variable and generally dry climate from 7.8 to 1 ka (1 ka = 1,000 cal year BP), and a relatively stable and wet climate after 1 ka. Superimposed on this general trend, six dry intervals at 7.6–7.2 ka, 6.2–5.9 ka, 5.3–4.9 ka, 4.4–3.8 ka, 2.7–2.4 ka, and 1.7–1.1 ka were detected from the high-resolution carbonate content and XRF data. The generally dry climate between 7.8 and 1 ka was almost synchronous with the decrease of East Asian and Indian monsoon intensities shortly after 8 ka. The six dry intervals can be correlated with weak monsoon events recorded in the East Asia and Indian monsoon regions, as well as the North Atlantic cold events. Our data suggest that millennial-scale monsoon variations could cause highly variable climate conditions in arid northwest China during the Holocene. These millennial-scale climate variations may reflect changes in solar variation and/or changes in oceanic and atmospheric circulation.  相似文献   

7.
The lipids in a sediment core from Lake Valencia, a hypereutrophic freshwater lake in Venezuela, are examined to understand environmental changes over the last ∼13,000 years. From the latest Pleistocene to the earliest Holocene, total organic carbon (TOC) substantially increased from 2.2 to 10%, while total organic carbon over total nitrogen (TOC/TN) decreased from as high as 34 to as low as 10. Correspondingly, the concentration of terrestrially derived triterpenoids markedly decreased, and the dominant n-alkane shifted from C31 to C23 or C25. During the same period, algal biomarkers such as botryococcenes, dinosterol, isoarborinol, C20 HBIs and 1,15C32 keto-ol markedly increased in abundance. These changes suggested a greater contribution of algal organic matter at the onset of the Holocene, which was concurrent with increasing rainfall and the formation of a permanent lake (Lake Valencia) in the Aragua Valley, Venezuela. The age profile of Paq, a n-alkane based proxy, showed large oscillations (0.20–0.81), reflecting historical variations in source strength of submerged/floating vs. terrestrial/emergent OM inputs. An abrupt increase in tetrahymanol abundance at ∼7,260 cal years BP suggests the establishment of an oxic–anoxic boundary in the lake’s water column. After reaching its maximum abundance at ∼2,100 cal year BP, botryococcenes, a biomarker of Botryococcus braunii, gradually decreased to below the detection limit in the uppermost sediments, while different algal/microbial biomarkers such as diploptene, dinosterol and isoarborinol substantially increased. These different historical profiles of algal/microbial biomarkers reflect different responses of source organisms to environmental changes throughout this period. The δ13C determinations presented exceptionally enriched values for botryococcene isomers (−7.7 to −15.1‰), indicating the utilization of bicarbonate as carbon sources in an extremely productive ecosystem.  相似文献   

8.
High-resolution terrestrial records of Holocene climate from Southern California are scarce. Moreover, there are no records of Pacific Decadal Oscillation (PDO) variability, a major driver of decadal to multi-decadal climate variability for the region, older than 1,000 years. Recent research on Lake Elsinore, however, has shown that the lake’s sediments hold excellent potential for paleoenvironmental analysis and reconstruction. New 1-cm contiguous grain size data reveal a more complex Holocene climate history for Southern California than previously recognized at the site. A modern comparison between the twentieth century PDO index, lake level change, San Jacinto River discharge, and percent sand suggests that sand content is a reasonable, qualitative proxy for PDO-related, hydrologic variability at both multi-decadal-to-centennial as well as event (i.e. storm) timescales. A depositional model is proposed to explain the sand-hydrologic proxy. The sand-hydrologic proxy data reveal nine centennial-scale intervals of wet and dry climate throughout the Holocene. Percent total sand values >1.5 standard deviation above the 150–9,700 cal year BP average are frequent between 9,700 and 3,200 cal year BP (n = 41), but they are rare from 3,200 to 150 cal year BP (n = 6). This disparity is interpreted as a change in the frequency of exceptionally wet (high discharge) years and/or changes in large storm activity. A comparison to other regional hydrologic proxies (10 sites) shows more then occasional similarities across the region (i.e. 6 of 9 Elsinore wet intervals are present at >50% of the comparison sites). Only the early Holocene and the Little Ice Age intervals, however, are interpreted consistently across the region as uniformly wet (≥80% of the comparison sites). A comparison to two ENSO reconstructions indicates little, if any, correlation to the Elsinore data, suggesting that ENSO variability is not the predominant forcing of Holocene climate in Southern California.  相似文献   

9.
A 12.87-m-long sediment core was retrieved from closed-basin Lake Daihai in the monsoon–arid transition zone of north-central China. Oxides of major elements and their ratios normalized to Al in the AMS-14C-dated core were employed to evaluate chemical weathering intensity (CWI) in the lake drainage basin, which reflects hydrothermal conditions in the study area. Lower CWI periods occurred prior to 14.5 ka BP, and during the intervals ca. 11.7–10.3, 3.5–3.2, 2.6–1.7 ka BP, and 1.2–0 ka BP, indicating relatively low temperatures and moisture availability. Greater CWI during the intervening periods ca. 14.5–11.7, 10.3–9.0, 3.2–2.6, and 1.7–1.2 ka BP, with the maximum CWI at ca. 6.7–3.5 ka BP, imply ameliorated hydrothermal conditions in the lake basin, i.e. higher temperatures and precipitation. Exceptionally low CWI, associated with high CaO/MgO ratio during ca. 9.0–6.7 ka BP, suggests higher evaporation rates in the area under warmer temperature. Overall, CWI displays in-phase variations with changes in organic matter (TOC, TN), carbonate (CaCO3) and pollen assemblages, all of which are related to variations in monsoon effective precipitation. High CWI indicates strong monsoon-induced precipitation, whereas low CWI reflects a weak precipitation regime. The optimum hydrothermal status, recorded by the strongest CWI and maximum monsoon effective precipitation during ca. 6.7–3.5 ka BP defines the Holocene climate optimum (HCO) in the Lake Daihai region. These results indicate that the HCO prevails after the early Holocene in the monsoon–arid transition zone of north-central China. Temperature and precipitation variations during most of the Holocene, inferred from the lake sediments, are due largely to insolation forcing. Dry but warm conditions ca. 9.0–6.7 ka BP, however, probably reflect the complex interactions between insolation and geography (e.g. altitude and local topography).  相似文献   

10.
A sediment core from Lake Koucha (eastern Tibetan Plateau) was investigated using organic biomarkers and their stable carbon isotope signatures. The correlation between TOC content, total amount of aquatic macrophyte-derived n-alkanes (e.g. nC23) and δ13C values of TOC and nC23 indicates that Lake Koucha was macrophyte-dominated before 8 cal ka BP. Shortly after the lake turned from a saline to a freshwater system at 7.2 cal ka BP, a variety of algal and bacterial markers such as hopanoids and isoprenoids emerged, of which phytane, pentamethylicosene (PMI), moretene and diploptene are particularly abundant. Phytane and PMI show different isotopic signals (≈−18 and ≈−28‰, respectively), which indicates that they originated from different sources. Phytane may have been derived from cyanobacteria, while methanogenic archaea may be the source of PMI. The isotopic depletion of diploptene and moretene (≈−60‰) indicates the presence of methanotrophs. After 6.1 cal ka BP, the saturated C20 highly branched isoprenoid (HBI) became the dominant constituent of the aliphatic hydrocarbon fraction. Such dominance has rarely been reported in lacustrine environments, and indicates a strong presence of algae (most likely diatoms) or cyanobacteria. At 4.7 cal ka BP, the appearance of an unsaturated C25 HBI, which is a specific biomarker for diatoms, was noted. Furthermore, the level of nC17-alkane was observed to increase in abundance in the uppermost two samples. These results suggest that the lake was phytoplankton-dominated during the last 6.1 ka. Relatively low biomarker concentrations and δ13C values at 6.0, 3.1 and 1.8 cal ka BP indicate the occurrence of cool periods, which is in agreement with inferences from other locations on the Tibetan Plateau. The δ13C values of nC23 range from −23.5 to −12.6‰, with high values at the peak of macrophyte abundance at ca. 11 cal ka BP and at the phytoplankton maximum between ca 6.1 and 2.8 cal ka BP. Thus, aquatic macrophyte-derived mid-chain n-alkanes have been found to be excellent indicators of carbon-limiting conditions, which lead to the assimilation of isotopically-enriched carbon species. The limitation of carbon sources could be a localized phenomenon occurring in dense plant stands (as in the older section of the core), or it may be induced by high primary productivity (as in the younger section). Since the δ13C value of the inorganic carbon source may vary, the offset between the δ13C values of nC23 and TIC could serve as a more precise proxy for carbon-limiting conditions in lacustrine environments, which could in turn be interpreted with respect to lacustrine paleo-productivity.  相似文献   

11.
12.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   

13.
Quantitative reconstructions of mean July temperatures (T jul) based on new and previously published pollen-stratigraphical data covering the last 2000 years from 11 lakes in northern Fennoscandia and the Kola Peninsula are presented. T jul values are based on a previously published pollen-climate transfer function for the region with a root-mean-square error of prediction (RMSEP) of 0.99°C. The most obvious trend in the inferred temperatures from all sites is the general decrease in T jul during the last 2000 years. Pollen-inferred T jul values on average 0.18 ± 0.56°C (n = 91) higher than present (where “present” refers to the last three decades based on pollen-inferred T jul in core-top samples) are indicated between 0 and 1100 AD (2000–850 cal year BP), and temperatures −0.2 ± 0.47°C (n = 78) below present are inferred between 1100 and 1900 AD (850–50 cal year BP). No consistent temperature peak is observed during the ‘Medieval Warm Period’, ca. 900–1200 AD (1100–750 cal year BP), but the cooler period between 1100 and 1900 AD (850–50 cal year BP) corresponds in general with the ‘Little Ice Age’ (LIA). Consistently with independent stable isotopic data, the composite pollen-based record suggests that the coldest periods of the LIA date to 1500–1600 AD (450–350 cal year BP) and 1800–1850 AD (150–100 cal year BP). An abrupt warming occurred at about 1900 AD and the twentieth century is the warmest century since about 1000 AD (950 cal year BP).
A. E. BjuneEmail:
  相似文献   

14.
A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.  相似文献   

15.
The Qinling Mountain Range (33°–34°30′N, 107°–111°E; 3,767 m a.s.l.) lies south of the Chinese Loess Plateau and functions as the boundary between ‘north’ and ‘south’ China. Taibai Mountain (33°41′–34°10′N, 107°19′–107°58′E; 3,767 m a.s.l.) is the central massif and highest part of the range and is the highest mountain in eastern and central China, east of 105°E. It is also one of two mountains higher than the modern climatic timberline and the only one where high alpine lakes (>2,500 m a.s.l.) exist in eastern and central China. Sediments were recovered from Foye Chi (33°57′N, 107°44′E; 3,410 m a.s.l.), a small lake on the southern slope of the mountain, and measured for magnetic properties. Chronological control was achieved with AMS 14C dating. Combined with analyses of particle-size, TOC, C/N, δ13Corg and pollen in these sediments, and magnetic properties of catchment soils, the mineral-magnetic data reveal late Holocene palaeoenvironmental changes on the high-altitude southern slope of Taibai Mountain. Climate gradually ameliorated about 2,300 cal yr BP and warm and wet conditions occurred afterwards, culminating from 1,700 to 1,510 cal yr BP. The climate began to deteriorate at 1,510 cal yr BP, but was still warmer and wetter than present until ~663 cal yr BP. Cool, arid conditions peaked and were cooler and drier than the present at 663–290 cal yr BP, coincident with the Little Ice Age. Climate became warmer and more humid again after 290 cal yr BP. Data from these less anthropologically-disturbed alpine-lake sediments provide a record of late Holocene palaeoenvironmental change that supplements information from historical documents and literature for eastern and central China.  相似文献   

16.
We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85–0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.  相似文献   

17.
A study on two closed salt lake basins, Tal Chapar and Parihara in the eastern margin of the Thar Desert, Rajasthan, was carried out to unravel late Quaternary geomorphic evolution of these saline lakes. Both lakes are elliptical in shape bordered by stabilised dunes, and are oriented in a NE-SW direction, i.e., in the direction of the prevailing summer monsoon wind. Both lakes have been formed in the wind-shadow zones of isolated hills of Precambrian quartzite. Our study indicates that the late Quaternary sediments in the lakes began with the cyclic deposition of laminated fine silt layers (0.5 m thick), rich in organic matter, alternating with ripple cross-bedded sand layers (each ∼1.5–2 m thick). Sand layers that are moderately sorted are separated by laminated silt-clay layers with gypsum/calcite and this unit occurs in the upper most 4 m sequence in deeper sections. The presence of gypsum crystals within the laminated sediments suggests a high concentration of Ca in the inflowing water. At Parihara Lake the organic carbon-rich sediments at 95 cm depth was dated to 7,375 + 155/−150 year BP. At Tal Chapar radiocarbon dates of 7,190 + 155/−150 and 9,903 + 360/−350 was obtained from the sediments rich in organic carbon occurring at a depth of 1.35 m and 1.80 m, respectively. The study reveals strong hydrologic oscillations during the past ∼14,000 year BP (13,090 + 310/−300 year BP). Quaternary geomorphic processes, especially the strong aeolian processes during dry climatic phases, played a major role in the formation of the lake basins, as well as the fringing linear dunes. Geochemical and mineralogical analyses of the lacustrine sediments, supported by radiocarbon dates indicate the existence of an ephemeral lake earlier than ∼13,000 year BP as sediments began to be deposited in a lacustrine environment implying sustained runoff in the catchments. A freshwater lake formed between 9,000 year and 7,000 year BP. The lake dried periodically and this strong fluctuating regime continued until about ∼7,000 year BP. Mid-Holocene was wet and this was possibly due to higher winter rains A saline lake existed between 6,000 year and 1,300 year BP and finally present day semi arid conditions set in since 1,200 year BP. Remnants of a habitation site (hearth and charred bones) on stabilised dune at Devani near Tal Chapar were dated to 240 ± 120 year, while that at Gopalpura was dated to 335 ± 90 year. These historical sites on stabilised dunes were, according to the local accounts, settlements of people who used the lake brine for manufacturing salt.  相似文献   

18.
This study used organic matter in oligotrophic Lake Constance (southern Germany) to reconstruct lake environment and to disentangle the multiple factors, such as climate change and human impacts, which influence sedimentation in large lakes. A sediment core from Upper Lake Constance, which represents 16,000 years of Late Glacial and Holocene lake history, was analysed for organic biomarkers, hydrogen index and elements calcium, strontium, and magnesium. Magnetic susceptibility was measured to establish a high-resolution stratigraphic framework for the core and to obtain further information about changes with respect to relative allochthonous versus autochthonous sedimentation. Dinosterol—a biomarker for dinoflagellates—and calcium have low concentrations in Younger Dryas sediments and consistently high concentrations between 10,500 and 7,000 cal. years BP. These variations are attributed to changes in lake productivity, but are not reflected in the proportion of total organic carbon within the sediment. During the Younger Dryas and between 6,000 and 2,800 cal. years BP, concentrations and accumulation rates of land-plant-derived C29-steroids (β-sitosterol, stigmastanol and stigmasterol), in combination with a relatively low HI, indicate periods of enhanced terrigenous input to the lake. For the Younger Dryas, higher runoff can be attributed to a cold climate, leading to decreased vegetation cover and increased erosion. After 6,000 cal. years BP, high terrestrial input may be explained by enhanced precipitation. Biomarker and HI results, in combination with archaeological studies, raise the question as to whether lakeshore settlements affected sedimentation in Upper Lake Constance between 6,000 and 2,800 cal. years BP.  相似文献   

19.
Climatic and environmental changes since the last glacial period are important to our understanding of global environmental change. There are few records from Southern Tibet, one of the most climatically sensitive areas on earth. Here we present a study of the lake sediments (TC1 core) from Lake Chen Co, Southern Tibet. Two sediment cores were drilled using a hydraulic borer in Terrace 1 of Lake Chen Co. AMS 14C dating of the sediments showed that the sequence spanned >30,000 years. Analyses of present lake hydrology indicated that glacier melt water is very important to maintaining the lake level. Sediment variables such as grain size, TOC, TN, C/N, Fe/Mn, CaCO3, and pollen were analyzed. Warm and moderately humid conditions dominated during the interval 30,000–26,500 cal year BP. From 26,500 to 20,000 cal year BP, chemical variables and pollen assemblages indicate a cold/dry environment, and pollen amounts and assemblages suggest a decline in vegetation. From 20,000 to 18,000 cal year BP, the environment shifted from cold/dry to warm/humid and vegetation rebounded. The environment transitioned to cold/humid during 16,500–10,500 cal year BP, with a cold/dry event around 14,500 cal year BP. After 10,500 cal year BP, the environment in this region tended to be warm/dry, but exhibited three stages. From 10,500 to 9,000 cal year BP, there was a short warm/humid period, but a shift to cold/dry conditions occurred around 9,000 cal year BP. Thereafter, from 9,000 to 6,000 cal year BP, there was a change from cold/dry to warm/humid conditions, with the warmest period around 6,000 cal year BP. After 6,000 cal year BP, the environment cooled rapidly, but then displayed a warming trend. Chemical variables indicate that a relatively warm/dry event occurred around 5,500–5,000 cal year BP, which is supported by time-lagged pollen assemblages around 4,800 cal year BP. Our lake sediment sequence exhibits environmental changes since 30,000 cal year BP, and most features agree with records from the Greenland GISP2 ice core and with other sequences from the Tibetan Plateau. This indicates that environmental changes inferred from Lake Chen Co, Southern Tibet were globally significant.  相似文献   

20.
A consequence of predicted climate warming will be tree-line advance over large areas of the Russian tundra. Palaeolimnological techniques can be used to provide analogues of how such changes in tree-line advance and subsequent retreat affected lake ecosystems in the past. A Holocene sediment core taken from Kharinei Lake (Russia) was dated radiometrically and used for multi-proxy analyses with the aim of determining how climate and tree-line dynamics affected the productivity, community structure, carbon cycling and light regime in the lake. Pollen and macrofossil analyses were used to determine the dates of the arrival and retreat of birch and spruce forest. C:N ratios and percent loss-on-ignition were used to infer past changes in sediment organic matter. Visible-near-infrared spectroscopy and diatom analysis were used to infer past changes in lake-water carbon. Algal pigments and aquatic macrophytes were used to determine changes in lake productivity and light. Chironomids together with remains of the aquatic flora and fauna were used to provide information on past July temperature and continentality. Lake sedimentation was initiated shortly before 11,000 cal. years BP, when both chironomid- and pollen-inferred temperature reconstructions suggest higher summer temperatures than present, between 1 and 2°C warmer, and lake productivity was relatively high. A few trees were already present at this time. The spruce forest expanded at 8,000 cal. year BP remaining in the vicinity of the lake until 3,500 cal. year BP. This period coincided with a high concentration of organic material in the water column, and relatively high benthic productivity, as indicated by a high benthic: planktonic diatom ratio. After tree-line retreat, the optical transparency of the lake increased, and it became more open and exposed, and was thus subject to greater water-column mixing resulting in a higher abundance of diatom phytoplankton, especially heavily silicified Aulocoseira species. The colder climate resulted in a shorter ice-free period, the lake was less productive and there was a loss of aquatic macrophytes. Increased wind-induced mixing following forest retreat had a greater influence on the lake ecosystem than the effects of decreasing organic matter concentration and increased light penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号