首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNe) and compare with observations. Using spherically symmetric self-similar solutions, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNe can be accounted for by shocked wind segments that were expelled during the early-PN phase, if the fast wind speed is moderate,   v 2∼ 400–600 km s−1  , and the mass-loss rate is a few times  10−7 M yr−1  . We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNe, which indicates an important role of jets, rather than a spherical fast wind, cannot be explained by the flow studied here.  相似文献   

2.
3.
We study the influence of X-rays on the wind structure of selected O stars. For this purpose we use our non-local thermodynamic equilibrium (NLTE) wind code with inclusion of additional artificial source of X-rays, assumed to originate in the wind shocks.
We show that the influence of shock X-ray emission on wind mass-loss rate is relatively small. Wind terminal velocity may be slightly influenced by the presence of strong X-ray sources, especially for stars cooler than   T eff≲ 35 000 K  .
We discuss the origin of the   L X/ L ∼ 10−7  relation. For stars with thick wind this relation can be explained assuming that the cooling time depends on wind density. Stars with optically thin winds exhibiting the 'weak wind problem' display enhanced X-ray emission which may be connected with large shock cooling length. We propose that this effect can explain the 'weak wind problem'.
Inclusion of X-rays leads to a better agreement of the model ionization structure with observations. However, we do not find any significant influence of X-rays on P  v ionization fraction implying that the presence of X-rays cannot explain the P  v problem.
We study the implications of modified ionization equilibrium due to shock emission on the line transfer in the X-ray region. We conclude that the X-ray line profiles of helium-like ions may be affected by the line absorption within the cool wind.  相似文献   

4.
The dynamics of the wind–wind collision in massive stellar binaries are investigated using 3D hydrodynamical models which incorporate gravity, the driving of the winds, the orbital motion of the stars and radiative cooling of the shocked plasma. In this first paper, we restrict our study to main-sequence O+O binaries. The nature of the wind–wind collision region is highly dependent on the degree of cooling of the shocked plasma, and the ratio of the flow time-scale of the shocked plasma to the orbital time-scale. The pre-shock wind speeds are lower in close systems as the winds collide prior to their acceleration to terminal speeds. Radiative inhibition may also reduce the pre-shock wind speeds. Together, these effects can lead to rapid cooling of the post-shock gas. Radiative inhibition is less important in wider systems, where the winds are accelerated to higher speeds before they collide, and the resulting collision region can be largely adiabatic. In systems with eccentric orbits, cold gas formed during periastron passage can persist even at apastron, before being ablated and mixed into its surroundings and/or accelerated out of the system.  相似文献   

5.
The variability of line profiles in spectra of bright OB stars has been studied.We obtain more than 1000 high quality spectra of δ Ori A, λ Ori A, α Cam, 19 Cep, ι Her, ρ Leo and other target stars. We revealed the line profile microvariability of small amplitude (0.5–3% in the adjacent continuum units) for all observed stars. For most stars only cyclic components of the line profile variability (LPV) at the time scales from hours to days were detected. These components seem to be connected with both the non-radial pulsations (NRP) and rotation line profile modulation. In the spectra of δ Ori A and λ Ori A we found the evidences of the stochastic LPV in spectra, probably connected with the small clumps in the stellar wind. On the basis of recent observations we discuss the origin of the magnetic field of early-type stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
8.
9.
10.
We present the analytic and numerical models of the 'cluster wind' resulting from the multiple interactions of the winds ejected by the stars of a dense cluster of massive stars. We consider the case in which the distribution of stars (i.e. the number of stars per unit volume) within the cluster is spherically symmetric, has a power-law radial dependence, and drops discontinuously to zero at the outer radius of the cluster. We carry out comparisons between an analytic model (in which the stars are considered in terms of a spatially continuous injection of mass and energy) and 3D gasdynamic simulations (in which we include 100 stars with identical winds, located in 3D space by statistically sampling the stellar distribution function). From the analytic model, we find that for stellar distributions with steep enough radial dependencies, the cluster wind flow develops a very high central density and a non-zero central velocity, and for steeper dependencies, it becomes fully supersonic throughout the volume of the cluster (these properties are partially reproduced by the 3D numerical simulations). Therefore, the wind solutions obtained for stratified clusters can differ dramatically from the case of a homogeneous stellar distribution (which produces a cluster wind with zero central velocity, and a fully subsonic flow within the cluster radius). Finally, from our numerical simulations, we compute predictions of X-ray emission maps and luminosities, which can be directly compared with observations of cluster wind flows.  相似文献   

11.
In this work, we present a comprehensive X-ray picture of the interaction between a super star cluster and the interstellar medium. In order to do that, we compare and combine the X-ray emission from the superwind driven by the cluster with the emission from the wind-blown bubble. Detailed analytical models for the hydrodynamics and X-ray luminosity of fast polytropic superwinds are presented. The superwind X-ray luminosity models are an extension of the results obtained in Paper I. Here, the superwind polytropic character allows us to parametrize a wide variety of effects, for instance, radiative cooling. Additionally, X-ray properties that are valid for all bubble models taking thermal evaporation into account are derived. The final X-ray picture is obtained by calculating analytically the expected surface brightness and weighted temperature of each component. All of our X-ray models have an explicit dependence on metallicity and admit general emissivities as functions of the hydrodynamical variables. We consider a realistic X-ray emissivity that separates the contributions from hydrogen and metals. The paper ends with a comparison of the models with observational data.  相似文献   

12.
We present high-resolution observations made with the Very Large Array (VLA) in its A configuration at frequencies between 5 and 43 GHz of a sample of five massive young stellar objects (YSOs): Lk Hα101, NGC 2024-IRS2, S106-IR, W75N and S140-IRS1. The resolution varied from 0.04 arcsec (at 43 GHz) to 0.5 arcsec (at 5 GHz), corresponding to a linear resolution as high as 17 au for our nearest source. A MERLIN observation of S106-IR at 23 GHz with 0.03-arcsec resolution is also presented. S106-IR and S140-IRS1 are elongated at 43 GHz perpendicular to their large-scale bipolar outflows. This confirms the equatorial wind picture for these sources seen previously in MERLIN 5-GHz observations. The other sources are marginally resolved at 43 GHz. The spectral indices we derive for the sources in our sample range from +0.2 to +0.8, generally consistent with ionized stellar winds. We have modelled our sources as uniform, isothermal spherical winds, with Lk Hα101 and NGC 2024-IRS2 yielding the best fits. However, in all cases our fits give wind temperatures of only 2000–5000 K, much less than the effective temperatures of main-sequence stars of the same luminosity, a result which is likely due to the clumpy nature of the winds.  相似文献   

13.
14.
15.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

16.
17.
This paper presents calculations for forbidden emission-line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf–Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an Archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (i) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10 per cent level. (ii) Deviations from a flat-toped profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-toped shape. (iii) The profile shape can be used to constrain the colliding wind bow shock opening angle. (iv) Structure in the line profile tends to be suppressed in binaries of shorter periods. (v) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to Infrared Space Observatory data for WR 147 and γ Vel (WR 11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For γ Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.  相似文献   

18.
19.
20.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号