首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
自黑潮脱落并由吕宋海峡进入中国南海的中尺度涡(简称脱落涡旋)对黑潮与南海的水体交换、热量及物质输送等过程均有十分重要的作用.基于1993—2013年OFES(OGCM for the Earth Simulator)模式数据产品,分析研究了脱落涡旋的统计特征及其温盐流三维结构,并与卫星观测结果进行对比分析.OFES模式...  相似文献   

2.
Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and their three-dimensional(3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology(JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic(anticyclonic) rings presented consistent negative(positive) anomalies of potential temperature;meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative(positive) salinity anomaly and a small positive(negative) one appeared for the composite cyclonic(anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.  相似文献   

3.
Data from satellite altimetry and in situ observations together with the Hybrid Coordinate Ocean Model (HYCOM) reanalysis data were used to investigate the mechanism and formation of an anticyclonic eddy in the northeastern South China Sea (SCS). Analysis of water mass using cruise data indicated that the water captured in the eddy diff ers from those in the SCS, the Kuroshio intrusion, and the eddy-forming region. Data from sea surface height (SSH) and sea level anomaly (SLA) indicate that the eddy formed due both to the Kuroshio intrusion and the local circulation in the SCS. The Kuroshio intrusion is present at the start of the eddy growth (March 5-9) before Kuroshio leaps the Luzon Strait. The eddy then becomes larger and stronger in the absence of the Kuroshio intrusion. From the eddy budget of the HYCOM reanalysis data, the formation of the eddy goes in three steps. By the third step, the eddy had become aff ected by variations of local SCS circulation, which is more strongly than in the fi rst step in which it is aff ected more by the Kuroshio intrusion. The variability of the temperature and salinity inside the eddy provide a support to this conclusion. The water in the SCS intruded into the eddy from the southeast, which decrease the salinity gradually in the southern part of the eddy during the growth period.  相似文献   

4.
两个西边界流延伸体区域中尺度涡统计特征分析   总被引:3,自引:2,他引:1  
黑潮和湾流是世界大洋中最典型的两支西边界流,黑潮延伸体(Kuroshio Extention,KE)和湾流延伸体(Gulf Stream Extention,GSE)区域中尺度涡活动十分活跃。本文综合利用卫星高度计资料和Argo浮标资料,对KE和GSE区域中尺度涡的表层特征及其对温盐影响进行了统计研究和对比分析。结果表明:黑潮和湾流主轴附近为涡旋频率的高值区,主轴南北两侧分别以气旋涡和反气旋涡数量占多,主轴附近的涡旋强度明显大于其他区域;两个区域的涡旋以西向移动为主,气旋涡和反气旋涡都具有向南(赤道)偏离的趋势;两个区域的涡旋数量都以夏、秋季较多,涡旋强度都在春、夏季较大,且GSE区域涡旋强度明显大于KE区域;气旋涡(反气旋涡)引起内部明显的温度负(正)异常,KE区域气旋涡(反气旋涡)内部呈"负-正"("正-负")上下层相反的盐度异常分布,GSE区域气旋涡(反气旋涡)在各层呈现较为一致的盐度负(正)异常;两个区域中尺度涡对温盐场的平均影响深度可达1 000×104 Pa以上。  相似文献   

5.
为了探究东海黑潮周边涡旋分布、形成机理及运动规律,基于法国国家空间研究中心(CNES)卫星海洋学存档数据中心(AVISO)的中尺度涡旋数据集展开了研究。首先,统计了近27年东海黑潮周边的涡旋分布,发现在黑潮弯曲海域产生了650个涡旋,在黑潮中段海域产生了271个涡旋,其中直径100~150 km之间的涡旋数量最多,涡旋振幅主要集中在2~6 cm。其次,分析了东海黑潮的运动路径和涡运动过程,结果表明,黑潮气旋式弯曲海域内侧易产生气旋涡,且移动路径较长,如台湾东北海域黑潮流轴气旋式弯曲处产生的涡旋,其平均位移达到了87.6 km;当反气旋式弯曲海域内侧产生反气旋涡时,涡旋往往做徘徊运动。黑潮中段海域的涡旋呈现出气旋涡在黑潮主轴西侧、反气旋涡在黑潮主轴东侧的极性对称分布特征,两类涡都沿黑潮主轴向东北方向移动。最后,结合再分析的流场、海面高度数据,讨论了涡旋运动规律和生成机制。黑潮弯曲处涡旋的生成与黑潮流体边界层分离有关,奄美大岛南部到冲绳岛西侧的黑潮逆流对黑潮中段海域涡的极性对称分布起到了关键作用,涡旋在运动过程中通常经历生长、成熟和衰变三个阶段。  相似文献   

6.
The statistical characteristics and formation mechanism of the Lanyu cold eddy were examined using satellite data from 1993 to 2013. The statistical characteristics of the Lanyu cold eddy in this paper are given for the first time to the best of our knowledge. It is found that Lanyu cold eddies occurred seven times in total during the period examined, and that this eddy generally moves from southeast to northwest and gradually decays when it approaches the island of Taiwan. Next, we estimated the eddy lifetime, diameter, strength and straight line travel distance. Composite analyses of sea surface height anomaly and geostrophic current demonstrate that the formation of the Lanyu cold eddy mainly results from the combined action of the Kuroshio loop and an anticyclonic eddy east of Lanyu Island. Thus, our study provides a new insight into our understanding of the formation mechanism of the Lanyu cold eddy.  相似文献   

7.
The mechanism of the anticyclonic eddy's shedding from the Kuroshio bend in Luzon Strait has been studied using a nonlinear 2 1/2 layer model, in a domain including the North Pacific and South China Sea. The model is forced by steady zonal wind in the North Pacific. Energy analysis is adopted to detect the mechanism of the eddy shedding. Twelve experiments with unique changes of wind forcing speed (to obtain different Kuroshio transports at Luzon Strait) were performed to examine the relationship between the Kuroshio transport (KT) and the eddy shedding events. In the reference experiment with KT of 22.7 Sv (forced with zonal wind idealized from the annual mean wind stress from the COADS data set), the interval of eddy shedding is 70 days and the shed eddy centers at (20°N, 117.5°E). When the Kuroshio bend extends westward, the southern cyclonic perturbation grows so rapidly as to form a cyclonic eddy (18.5°N, 120.5°E) because of the frontal instability in the south of the Kuroshio bend. In the evolution of the cyclonic eddy, it cleaves the Kuroshio bend and triggers the separation of the anticyclonic eddy. In statistical terms, anticyclonic eddy shedding occurs only when KT fluctuates within a moderate range, between 21 Sv and 28 Sv. When the KT is larger than 28 Sv, a stronger frontal instability south of the Kuroshio bend tends to generate a cyclonic eddy of size similar to the width of the Luzon Strait. The bigger cyclonic eddy prevents the Kuroshio bend from extending into the SCS and does not lead to eddy shedding. On the other hand, when the KT decreases to less than 21 Sv, the frontal instability south of the Kuroshio bend is so weak that the size of corresponding cyclonic eddy is smaller than half the width of the Luzon Strait. The cyclonic eddy, lacking power, fails to cleave the Kuroshio bend and cause separation of an anticyclonic eddy; as a result, no eddy shedding occurred then, either.  相似文献   

8.
The origins and evolutions of two anticyclonic eddies in the northeastern South China Sea (SCS) were examined using multi-satellite remote sensing data, trajectory data of surface drifting buoys, and in-situ hydrographic data during winter 2003/2004. The results showed that buoy 22918 tracked an anti-cyclonic warm-core eddy (AE1) for about 20 days (December 4–23, 2003) in the northeastern SCS, and then escaped from AE1 eventually. Subsequently to that, buoy 22517 remained within a different anti-cyclonic warm-core eddy (AE2) for about 78 days (from January 28 to April 14, 2004) in the same area. It drifted southwestward for about 540 km, and finally entered into the so-called “Luzon Gyre”. Using inference from sea level anomaly (SLA), sea surface temperature (SST), geostrophic currents and the buoys’ trajectories, it is shown that both eddies propagated southwestward along the continental slope of the northern SCS. The mean speeds of AE1 and AE2 movements were 9.7 cm/s and 10.5 cm/s, respectively, which are similar to the phase speed of Rossby waves in the northern SCS. The variation of instantaneous speeds of the eddy movement and intensity of anticyclonic eddy may suggest complex interactions between an anticyclonic eddy and its ambient fluids in the northern SCS, where the eddy propagated southwestward with Rossby waves. Furthermore, SLA and SST images in combination with the temperature and salinity profiles obtained during a cruise suggested that AE1 was generated in the interior SCS and AE2 was shed from the “Kuroshio meander”.  相似文献   

9.
2009-2010年冬季南海东北部中尺度过程观测   总被引:2,自引:1,他引:1  
根据南海北部陆架陆坡海域2009-2010年冬季航次的CTD调查资料,发现西北太平洋水在上层通过吕宋海峡入侵南海,其对南海东北部上层水体温盐性质的影响自东向西呈减弱趋势,影响范围可达114°E附近。入侵过程中受东北部海域反 气旋式涡旋(观测期间,其中心位于20.75°N,118°E附近) 的影响,海水的垂向和水平结构发生了很大变化,特别是涡旋中心区域,上层暖水深厚,混合层和盐度极大值层显著深于周边海域。该暖涡在地转流场、航载ADCP观测海流及卫星高度计资料中均得到了证实。暖涡的存在还显著影响了海水化学要素的空间分布,暖涡引起的海水辐聚将上层溶解氧含量较高的水体向下输运,使次表层的暖涡中心呈现高溶解氧的分布特征。  相似文献   

10.
黑潮在冬季常以流套的方式入侵南海,并多伴随着反气旋涡的脱落,脱落的反气旋涡将黑潮高温、高盐水带入南海,影响南海东北部水文要素和声速场的空间分布,目前尚未有对黑潮流套脱落反气旋涡声学效应的研究。利用2009~2020年卫星高度计数据和再分析数据,在南海东北部选取了6个冬季黑潮流套脱落反气旋涡,研究了其水文和声场结构,并应用Bellhop高斯射线模型仿真给出了其对声传播的影响。结果表明:(1)6个黑潮脱落反气旋涡平均半径为110~135km,垂向深度可达1 000~1 200 m,最大旋转速度为0.4~0.6 m/s。反气旋涡中心暖水下沉,温度异常均为正异常,暖核位置位于100~250 m处,最大正异常达到2.5°C。中心盐度异常呈现负-正-负的三核结构。反气旋涡在100~900 m深度声速为正异常,最大正异常超过8 m/s,出现在400 m左右。(2)声波从涡外穿过涡旋和从涡内向外传播,当地形不会影响声线的反转时,会聚区的位置发生后移,后移的距离在5~10 km;当地形阻碍声线的反转时,声线与地形接触的位置不同,会聚区可能出现前移或后移,后移最大为29km,前移最大可达23km。(3)当...  相似文献   

11.
东海PN断面夏季温盐及化学要素的分布特征   总被引:9,自引:2,他引:9  
刘兴泉 《海洋与湖沼》2001,32(2):204-212
由东海PN断面夏季温鼻度及化学要素CTD资料分析表明,东海夏季的温跃层和盐跃层在次表层生成,其强度随着跃层自陆架坡折区至近岸和外海的上移逐渐减弱。陆架区近表层的温度和盐度呈垂直均匀分布,冲绳海槽次表层呈高温、高盐,近表层呈高温,近表层呈高温、低盐,底层呈低温、次高盐特征。溶解氧浓度自近岸到外海由低变高,表层至底层溶解氧浓度在陆架区由高变低,冲绳海槽区则先由低变高然后又由变低。总二氧化碳浓度自表层至底层和自陆架坡折区到近岸和外海由低变高。磷酸盐和硅酸盐浓度自近岸至外海由高变低,而自表层至底层由低变高。陆架区的近表层和陆架坡折区分别有一个高碱度区。温盐及化学要素的分布特征与夏季海区垂直环流的反气旋运动、长江冲淡水及黑潮水入侵和海面强热辐射有关。此外,化学要素分布还与夏季海区的温盐结构、表混合层与大气间二氧化碳气体交换及表混合层中碳和营养盐光合作用的利用有关。  相似文献   

12.
Various kinds of datasets, such as satellite-derived sea surface temperature (SST), sea surface height, surface velocity produced by combining surface drifter and satellite altimeter data, and hydrographic data, led to the discovery of an anticyclonic eddy with lower SST than those of surrounding waters in the Kuroshio recirculation region south of Shikoku, as if the eddy were cyclonic. This anticyclonic eddy was formed east of Kyushu in late August to early September 1999 from the merger of two anticyclonic eddies which had migrated in the recirculation region to the sea south of Japan from the east. After the merger, the anticyclonic eddy strengthened abruptly and began to exhibit the low SST. In October, this eddy coalesced with the Kuroshio and moved swiftly eastward, accompanied by an amplitude growth of the Kuroshio meander. In mid November, off the Kii Peninsula, the eddy detached from the meandering Kuroshio. It then moved southwestward and again slowly propagated westward along the 30°N line. During this period, at least from late October 1999 to January 2000, SSTs over the anticyclonic eddy were found to be continuously lower than those of surrounding waters. This case tells us that we have to pay careful attention to the interpretation of mesoscale SST distributions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
东海北部气旋涡区冬半年水文特征的初步分析   总被引:3,自引:0,他引:3       下载免费PDF全文
关于东海北部气旋涡区夏半年水文结构及其逐月变化,作者已作了比较系统的分析。本文是上述工作的继续。鉴于冬半年海水的温、盐度等要素垂直分布均匀,其结构简单,而夏半年几个突出的水文现象大多没有出现,因此,本文叙述的方式和内容同前文是不同的。 迄今,只有毛汉礼等(1964)曾对研究海区冬季的水文特征以及海水类型作过分析,但对这一海区的水文特征在冬半年的变化规律尚未见报道。历史资料表明,该海区在冬  相似文献   

14.
In order to confirm the results of the authors’ previous work, which found that the existence of disturbances smaller than meso-scale eddies is important in large-scale mixing process between the Oyashio and Kuroshio waters in the intermediate layer, the results of an eddy-resolving model experiment are analyzed and compared with those of an eddy-permitting model. The intermediate salinity minimum given in the initial condition weakens as integration advances in the eddy-permitting model, while it recovers rapidly and is maintained thereafter in the eddy-resolving model, initialized from the unrealistic salinity distribution of the former. Filament-like fine structures in temperature and salinity develop actively in the latter, which are much smaller in horizontal width than meso-scale eddies, suggesting the importance of such disturbances in the large-scale mixing. The mixing ratio of the Oyashio water defined by the original Oyashio and Kuroshio waters shows that its value is generally higher in the intermediate lower sub-layer than in the intermediate upper sub-layer in the Mixed Water Region, and the salinity minimum exists between layers with low and high values of the mixing ratio with its strong vertical gradient. The eddy transports of the Oyashio and Kuroshio waters in an isopycnal layer are divided into four components, usual isopycnal mixing of temperature and salinity being dominant, followed by the component associated with the thickness flux. The southward eddy transport of the Oyashio water and the northward eddy transport of the Kuroshio water are not symmetric to each other because the thickness-flux-associated components are in the same direction (southward).  相似文献   

15.
邹广安 《海洋科学》2016,40(2):151-158
日本南部黑潮路径变异对北太平洋地区的气候和环境具有显著的影响,对黑潮路径变异的研究具有重要的意义。本文利用POM(Princeton Ocean Model)数值模式模拟了日本南部黑潮的路径变异情况,分析了黑潮大弯曲路径形成的可能机制。研究结果表明,当黑潮处于非大弯曲路径时,相对位势涡度的平均值呈现递减趋势,说明日本南部低位势涡度水在不断积累,这样会使得四国再循环流的强度增强,迫使黑潮保持平直路径,同时,近岸黑潮垂直流速剪切增大,斜压不稳定性的作用也逐渐增大;当黑潮从非大弯曲路径向大弯曲路径过渡时,再循环流强度的减弱会导致黑潮的流速剪切减小。根据海表高度异常场以及海洋上层流场信息发现,近岸黑潮附近的气旋涡会随着再循环流区域反气旋涡的东侧向南运动,最终导致黑潮大弯曲的发生。分析涡流的能量,结果显示,黑潮大弯曲路径的形成与斜压不稳定性密切相关。  相似文献   

16.
南海中尺度涡温盐结构的季节特征及形成机制   总被引:2,自引:0,他引:2  
本文利用最新的涡旋数据集和ARMOR3D数据,研究了南海中尺度涡温盐结构的季节特征及形成机制。合成分析的结果表明,在冬季,涡旋引起温度异常的水平分布在50米以浅表现为类似偶极型分布,而在50m以深则趋向于中心对称分布;在夏季,温度异常的水平分布均表现为中心对称的特征。涡旋引起盐度异常的水平分布也具有类似的季节特征,但是偶极型中的不对称性相对较弱。在垂向上,涡旋所致的温度异常表现为单层结构,而盐度异常则为三层结构。进一步的分析表明,涡旋所致温盐异常的垂向分布特征与背景温盐的垂向分层有关;而在50m以浅,温盐异常的水平分布的不对称特征主要由背景温盐场的水平平流所致。  相似文献   

17.
沈华 《海洋学研究》2014,32(1):11-18
利用WOD09和Argo剖面资料,结合SODA、OFES、GPCP和WHOI等资料分析了吕宋海峡西侧海域混合层盐度1984—2010年间的长期变化趋势和年代际变化特征,并利用混合层盐度平衡方程探讨了其变化机理。研究结果表明:(1)吕宋海峡西侧海域的盐度整体上呈现下降趋势,线性趋势为-0.020/a;(2)以1999年为界,吕宋海峡西侧海域的盐度在1999年之前为正距平,最大正距平值可达0.14,平均值为0.05,在1999年之后为负距平,最大负距平值为-0.22,平均值为-0.06;(3)影响该海域混合层盐度的长期变化趋势和年代际变化的主要因素为平流作用,特别是黑潮入侵的变化。  相似文献   

18.
numerical calculationsI~IOXAInong the numerical studies Of the circulation east of Taiwan Island, there were some studies, such as Yuan et al. (1998a, b), Wang et al. (1998). In their work, the Kuroshio east ofTaiwan Island and the currents southeast of Rgukyu-guntO were computed by using three-dimensional diagnOStic, semidiagnostic and prognostic model, respectively, based on the wind and hydrographic data obtained from two cruises, i. e., one cruise during October 1995, and the otherin…  相似文献   

19.
Temperature, salinity and density structures were observed on Sept. 23 and 24, 1986 at one vertical section across the East China Sea shelf edge by an advanced type of towed vehicle with CTD sensors which was developed by the Japan Marine Science and Technology Center. The vehicle was towed at a speed of 2.5 m s−1 down to 150 m depth and at intervals of 170–500 m width. The observed profile was 50 km long on Sept. 23 and 70 km long on Sept. 24 along the cross-shelf section. An on-ship acoustic Doppler current profiler was simultaneously used to measure current velocities at depths of 20, 50 and 100 m.Interesting features were noticed. Firstly, there was a vertical displacement of pycnoclines at the lower edge of the surface mixed layer accompanied by vertical inversion of the salinity and temperature in the vicinity of the shelf edge. Pycnoclines were displaced upward by 12 m toward the outer edge on Sept. 23 and by 20 m on Sept. 24. On Sept. 23, the salinity inversion took place in a layer 20 m thick and 8 km wide, whereas the temperature inversion took place in a layer 8 m thick and 1.5 km wide. These vertical inversions were probably generated by vertical shear of tidal currents which was observed by the Doppler current profiler. These results throw light on understanding the vertical mixing process of stratified water on the continental shelf edge. Secondly, an intrusion of the shelf water into the Kuroshio water was observed along pycnoclines below the surface mixed layer 60 to 70 m deep in the Kuroshio region outer break. The measurement was successful in showing a horizontal mixing process of the shelf water and the Kuroshio water which could not be found out by standard CTD observations.  相似文献   

20.
Altimeter data and output from the HYbrid Coordinate Ocean Model global assimilation run are used to study the seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. The results suggest that most eddy shedding events occur from December through March, and no eddy shedding event occurs in June, September, or October. About a month before eddy shedding, the Kuroshio intrusion extends into the South China Sea and a closed anticyclonic eddy appears inside the Kuroshio loop which then detaches from the Kuroshio intrusion. Anticyclonic eddies detached from December through February move westward at a speed of about 0.1 m s−1 after shedding, whereas eddies detached in other months either stay at the place of origin or move westward at a very slow speed (less than 0.06 m s−1). The HYCOM outputs and QuikSCAT wind data clearly show that the seasonal variation of eddy shedding is influenced by the monsoon winds. A comparison between eddy volume and integrated Ekman transport indicates that, once the integrated Ekman transport exceeds 2 × 1012 m3 (which roughly corresponds to the volume of an eddy), the Kuroshio intrusion expands and an eddy shedding event occurs within 1 month. We infer that the Ekman drift of the northeasterly monsoon pushes the Kuroshio intrusion into the SCS, creates a net westward transport into the Strait, and leads to an eddy detachment from the Kuroshio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号