首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) south of Ius Chasma, (2) south of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma, and (5) west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls.  相似文献   

2.
The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (−3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation.  相似文献   

3.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

4.
The central Valles Marineris is the widest part of the equatorial trough system of Mars. Melas Chasma and parts of Coprates and Candor Chasmata provide some of the clearest clues on the relationships between erosional landforms, deposits and various volcanic and tectonic features. A detailed geomorphic study of the troughs allows the identification of faults and other structures in most parts of this area, in spite of local obliteration by erosional and depositional processes. Tectonic control on erosional landforms appears mainly in the northern walls of Melas Chasma and in the edge of the inner plateau above the trough floor. Longitudinal major faults are identified only along the northern wall. However the trough may not be a simple half graben: another fault line is inferred inside Melas Chasma southern walls along the edge of a wide bench of layered deposits. A deep and relatively narrow graben linking those of Ius and Coprates Chasmata appears to be downfaulted inside a wider basin with eroded sides. Transverse or oblique faults control some outlines of these erosional landforms, whereas a few monoclines or faults restricted to the basin beds reveal compressional stresses or differential vertical movements related to the basin development.  相似文献   

5.
This article documents the clastic nature of sulphate evaporite beds in the Tithonium Chasma located in the Valles Marineris region of Mars. These beds form a stratified succession characterised by very thick interbedded channel-fill breccia bodies. We infer that the bouldery channel-fills were deposited by voluminous mass-flow processes occurring in a relatively deep subaqueous environment. The redeposition of the coarse-grained evaporite would have responded to phases of high denudation rates in rapidly uplifting hinterlands. Tectonic activity also caused the diapiric uprise and exhumation of evaporite diapirs within the Valles Marineris chasmata, where the apparently young and well development karstic landforms probably formed during the late Amazonian age. These new data strongly suggest the deposition of both primary and resedimented evaporites in a marginal basin area, which effectively restricted ocean access through the proposed “proto-Valles Marineris Strait”. The associated ocean may be the “Ocean Borealis” of Late Noachian-Early Hesperian age.  相似文献   

6.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   

7.
The walls of the Valles Marineris canyons are affected by about 45 landslides. The study of these landslides provides a test of the hypothesis of processes having affected Martian wallslopes after their formation. The dynamics of Valles Marineris landslides are controversial : either the landslides are interpreted as large debris flows or as dry rock avalanches. Their morphology and their topography are basic parameters to understand their dynamics. From topographic MOLA data and remote sensing images acquired with different spatial resolutions (Viking, THEMIS, MOC), the 3D geometry of 45 landslides of Valles Marineris has been studied. The landslides have been classified in 3 geomorphologic classes from the topography of the landslide deposits: the “chaotic” landslides without well identified structures, the “structured deposit without debris aprons” landslides with tectonic structures and small roughness at the deposit front and the “structured deposit with debris aprons” which display circular normal faults at the back of the deposit and several debris aprons at the front of the landslide. The spatial distribution of the three morphological types is in relation with the confinement of the canyons. The initial volume and the total deposited volume were also measured to compute volume balances. The deposited volumes range from 50 to . All volume balances display a maximum deficit ranging from 5% to 70%. The landslides with the largest deficits take place within an enclosed-canyon (Hebes Chasma). Lacking material exportation, these deficits could be interpreted as reflecting the porosity of the landslide source. This fact is in agreement with the hypothesis of a karstic origin of these enclosed-canyons. The Valles Marineris landslides have large mobilities (length/vertical drop) ranging from 1.8 to 12 implying low coefficients of friction and so fluidization mechanisms. The possible filling up of the porosity by volatile could be compatible with the fluidization patterns of Valles Marineris landslides.  相似文献   

8.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   

9.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations.  相似文献   

10.
High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history.  相似文献   

11.
Layered deposits have been observed in different locations at the surface of Mars, as crater floors and canyons systems. Their high interest relies in the fact they imply dynamical conditions in their deposition medium. Indeed, in opposition to most of the rocks of the martian surface, which have a volcanic origin, bright layered deposits seems to be sedimentary outcrops.Capri Chasma, a canyon located at the outlet of Valles Marineris, exhibits such deposits called Interior Layered Deposits (ILD). A large array of visible and infrared spacecraft data were used to build a Geographic Information System (GIS). We added HiRiSE images, from the recent MRO mission, which offer a spatial resolution of 25 cm per pixel. It allowed the mapping and the analysis of morphologies in the canyon. We highlighted that the ILD are several kilometers thick and flat-top stratified deposits. They overlap the chaotic floor. They are surrounded and cut by several flow features that imply that liquid water was still acting after the formation of these stratified deposits. The density of crater on the floor of Capri Chasma was quantified. The current topography was aged to 3 Gyr. All these morphological information allow us to suggest a plausible geological history for Capri Chasma. We propose that the Interior Layered Deposits have formed during the Hesperian, during or after the opening of the canyon. Some observations argue that water discharges have happened at several times before and just after the formation of the ILD. Liquid water must have played a major role in the formation of these deposits after 3.5 Gyr, implying that it was present in surface at least locally and temporarily. If this can be applied to ILD in others canyons of Valles Marineris, it would imply that liquid water was stable in surface or sub-surface during the Hesperian. Or in the actual conditions, with a cold and dry martian surface, long-term standing water bodies are not possible. Thus we suggest that either the climate at the Hesperian was cold, but wetter, or as warm as the Noachian climate, what is less likely. Nevertheless, the global climate change which has occurred at the beginning of Mars history may have been later than announced.  相似文献   

12.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ∼0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions.  相似文献   

13.
Chris H. Okubo 《Icarus》2010,207(1):210-21
The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.  相似文献   

14.
Previous orbital mapping of crystalline gray haematite, ferric oxides, and sulfates has shown an association of this mineralogy with light-toned, layered deposits on the floor of Valles Marineris, in chaos terrains in the canyon’s outflow channels, and in Meridiani Planum. The exact nature of the relationship between ferric oxides and sulfates within Valles Marineris is uncertain. The Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite (OMEGA) spectrometer initially identified sulfate and ferric oxides in the layered deposits of Valles Marineris. The Thermal Emission Spectrometer (TES) has also mapped coarse (gray) haematite in or at the base of these deposits. We use Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra and Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) imagery from the Mars Reconnaissance Orbiter (MRO) to explore the mineralogy and morphology of the large layered deposit in central Capri Chasma, part of the Valles Marineris canyon system that has large, clear exposures of sulfate and haematite. We find kieserite (MgSO4·H2O) and ferric oxide (often crystalline red haematite) in the lower bedrock exposures and a polyhydrated sulfate without ferric oxides in the upper bedrock. This stratigraphy is duplicated in many other basinal chasmata, suggesting a common genesis. We propose the haematite and monohydrated sulfate formed by diagenetic alteration of a sulfate-rich sedimentary deposit, where the upper polyhydrated sulfate-rich, haematite-poor layers either were not buried sufficiently to convert to a monohydrated sulfate or were part of a later depositional phase. Based on the similarities between the Valles Marineris assemblages and the sulfate and haematite-rich deposits of Meridiani Planum, we hypothesize a common evaporite and diagenetic formation process for the Meridiani Planum sediments and the sulfate-bearing basinal Interior Layered Deposits.  相似文献   

15.
Martian altitudes were measured by radar during the oppositions of 1971 and 1963 using the 64-m antenna at Goldstone (California). The resultant topographic profiles substantiate a zonal classification of the volcanic flows blanketing the south flanks of Arsia Mons, and they confirm the existence of a secondary, parasitic shield attached from the SSW to the main Arsia shield. The secondary shield is about 400 km in diameter at its base and at least 4 km high at its center. South of Valles Marineris, the Tharsis plateau is bounded by the approximate longitudes of 80° in the east and 140° in the west. In the Sinai Planum, closely adjacent to Coprates Chasma, another rise has been detected, bounded by longitudes of 55° in the east and 80° in the west. A volcanic shield of diameter 80 km, capped with a 22 km caldera has been identified near the crest of the rise. Topographic highs of about 1 km are associated with heavily faulted tracts such as Claritas Fossae. The distribution and orientation of the lunar-mare-like ridges in Sinai Planum appear to be independent of the regional gradients. Segments of the chaotic terrain at the eastern terminus of Valles Marineris are located as much as 6 km below the level of the surrounding plains.  相似文献   

16.
The disk-resolved flyby images of the nucleus of Comet 81P/Wild 2 collected by Stardust are used to perform a detailed study of the photometric properties of this cometary nucleus. A disk-integrated phase function from phase angle 11° to about 100° is measured and modeled. A phase slope of 0.0513 ± 0.0002 mag/deg is found, with a V-band absolute magnitude of 16.29 ± 0.02. Hapke’s photometric model yields a single-scattering albedo of 0.034, an asymmetry factor of phase function −0.53, a geometric albedo 0.059, and a V-band absolute magnitude of 16.03 ± 0.07. Disk-resolved photometric modeling from both the Hapke model and the Minnaert model results in 11% model RMS, indicating small photometric variations. The roughness parameter is modeled to be 27 ± 5° from limb-darkening profile. The modeled single-scattering albedo and asymmetry factor of the phase function are 0.038 ± 0.004 and −0.52 ± 0.04, respectively, consistent with those from disk-integrated phase function. The bulk photometric properties of the nucleus of Wild 2 are comparable with those of other cometary nuclei. The photometric variations on the surface of the nucleus of Wild 2 are at a level of or smaller than 15%, much smaller than those on the nucleus of Comet 19P/Borrelly and comparable or smaller than those on the nucleus of Comet 9P/Tempel 1. The similar photometric parameters of the nuclei of Wild 2, Tempel 1, and the non-source areas of fan jets on Borrelly may reflect the typical photometric properties of the weakly active surfaces on cometary nuclei.  相似文献   

17.
New instruments on board the Mars Global Surveyor (MGS) spacecraft began providing accurate, high-resolution image and topography data from the planet in 1997. Though data from the Mars Orbiter Laser Altimeter (MOLA) are consistent with hypotheses that suggest large standing bodies of water/ice in the northern lowlands in the planet's past history, Mars Orbiter Camera (MOC) images acquired to test these hypotheses have provided negative or ambiguous results. In the absence of classic coastal features to test the paleo-ocean hypothesis, other indicators need to be examined. Tuyas and hyaloclastic ridges are sub-ice volcanoes of unique appearance that form in ponded water conditions on Earth. Features with similar characteristics occur on Mars. MOLA analyses of these Martian features provide estimates of the height of putative ice/water columns at the edge of the Utopia Planitia basin and within Ophir Chasma of Valles Marineris, and support the hypotheses of a northern ocean on Mars.  相似文献   

18.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

19.
The difference in brightness between shadowed and sunlit regions in space images of Mars is a measure of the optical depth of the atmosphere. The translation of this difference into optical depth is what we name the “shadow method”. Our analysis of two HRSC data-sets and a HiRISE data-set indicates that it is possible to estimate the optical depth with the shadow method. In colors between yellow and red the accuracy may be around ±15%, and in some cases ±8-10%. In other colors we found larger errors.We came to these results in two steps. First, we investigated in how far shadow method retrievals are proportional to the true optical depth. To this end we analyzed about 150 locations in Valles Marineris that were imaged by HRSC. Whereas the studied region spans about 8 km in altitude we were able to study the relation between altitude and shadow-method retrievals. Retrievals from five HRSC panchromatic (675 ± 90 nm) stereo images yielded scale-heights with an average of 12.2 ± 0.7 km, which is very close to the expected local pressure scale height. Many studies have shown that the scale-height of optical depth and pressure commonly are similar. This indicates that the shadow method retrievals are on average close to proportional to the optical depth, because otherwise these would probably not yield a correct scale-height. HRSC’s red image yielded very similar results, but the blue, green, and NIR images did not.Next, we compared optical depth measurements by the two MER rovers with shadow method retrievals from orbiter images of the rover exploration sites. Retrievals with the shadow method appear systematically smaller than the rover measurements; dividing the retrievals by a “correction factor” yields an estimate of the real optical depth. Retrievals from three HRSC panchromatic stereo images of a region near the Spirit rover yielded a correction factor of 0.63 ± 0.09 when the sunlit comparison regions were at varying and more or less arbitrary distances from the shadows and 0.71 ± 0.06 when these were close together. Twenty retrievals from a HiRISE red (650 ± 100 nm) image of the Opportunity exploration site similarly yielded 0.68 ± 0.09. The results from these two case studies suggest that the shadow method has an accuracy of about ±15% or around ±8-10% in the best cases.  相似文献   

20.
We have used the Mars Global Surveyor Mars Orbiter Camera Wide Angle (MGS MOC WA) dataset to study albedo trends on the martian northern residual cap. Six study regions were selected, the Chasma Boreale source region, three regions near the center of the cap (“fish hook” region, latitude = 87°; “bottle opener” region, latitude = 87°, “steep-shallow” region, latitude = 85°), and two lower latitude regions (crater, latitude = 77°, and polar outlier, latitude = 82°), and the albedos of these six regions were examined. These regions were chosen due to their good temporal coverage in the MOC dataset, as well as having been studied by other researchers (Bass et al., 2000, Icarus 144, 382-396; Calvin and Titus, 2004, Lunar Planet. Sci. XXXV, Abstract 1455). The picture which emerges is complex. Most areas experience a combination of darkening and brightening through the northern summer; only one area consistently brightens (the polar outlier region). A good deal of interannual repeatability in each region's albedo behavior is seen, however. Possible causes for the observed complex behaviors include dust deposition from late summer storms, sintering of frost grains over the course of the summer, and cold trapping of volatiles on bright, cold surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号