首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results from a set of 12 solar corona radial velocity measurements in the 400-440 nm spectral band during the total solar eclipse of July 11, 1991 are reported. The measurements show that the orbital motion of the F-corona material near the sun in the ecliptic plane is consistent with Keplerian motion and predominantly, but not exclusively, prograde, as is usually assumed. This work demonstrates a method of using the measured radial velocities to sort out the relative amounts of K-corona, near-earth F-corona, near-solar F-corona, and scattered light in each measurement for each observation point W and E of the sun between 2.5Ro(solar radii) and 5Ro along the celestial equator and at three points north of the sun. The near-solar F-corona component is quite weak, contributing only 7-14% of the total signal in each case. The stronger diffraction component from near-earth F-corona is estimated to have been produced by particles with radii of about 11μ. In contrast, the scattered light component appears as strong zero-velocity features dominating all the measurements. The measurements W and E of the sun and near the ecliptic plane also show evidence of a red-shift velocity of at least 330 km s−1, suggestive of a high-speed dust outflow from the sun.  相似文献   

2.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

3.
We consider the thermal evolution of both icy and non-icy solids moving in highly eccentric orbits using an analytical solution of the heat diffusion equation. The thermal stresses which arise inside and at the surface of solids can exceed by several orders of magnitude the tidal stresses in the neighbourhood of the Sun for all material considered. This means that thermal disintegration is the most important factor in the evolution of cometary and meteorite-like bodies. This problem may be directly connected with the origin of the variable part of the infrared radiation excess in the F-corona observed at 4Rô and 9Rô from the Sun. The possible scenario of the disintegration of the distant solids due to the thermal stresses is also given.  相似文献   

4.
Masateru Ishiguro 《Icarus》2008,193(1):96-104
A thin, bright dust cloud, which is associated with the Rosetta mission target object (67P/Churyumov-Gerasimenko), was observed after the 2002 perihelion passage. The neckline structure or dust trail nature of this cloud is controversial. In this paper, we definitively identify the dust trail and the neckline structure using a wide-field CCD camera attached to the Kiso 1.05-m Schmidt telescope. The dust trail of 67P/Churyumov-Gerasimenko was evident as scattered sunlight in all images taken between September 9, 2002 and February 1, 2003, whereas the neckline structure became obvious only after late 2002. We compared our images with a semi-analytical dynamic model of dust grains emitted from the nucleus. A fading of the surface brightness of the dust trail near the nucleus enabled us to determine the typical maximum size of the grains. Assuming spherical compact particles with a mass density of 103 kg m−3 and an albedo of 0.04, we deduced that the maximum diameter of the dust particles was approximately 1 cm. We found that the mass-loss rate of the comet at the perihelion was on or before the 1996 apparition, while the mass-loss rate averaged over the orbit reached . The result is consistent with the studies of the dust cloud emitted in the 2002/2003 return. Therefore, we can infer that the activity of 67P/Churyumov-Gerasimenko has showed no major change over the past dozen years or so, and the largest grains are cyclically injected into the dust tube lying along the cometary orbit.  相似文献   

5.
The Helios 1 spacecraft was launched in December 1974 into a heliocentric orbit of 0.3 AU perihelion distance. Helios 2 followed one year later on a similar orbit. Both spaceprobes carry on board micrometeoroid experiments each of which contains two sensors with a total sensitive area of 121 cm2. To date, only preliminary data are available from Helios 2. Therefore the results presented here mainly apply to data from Helios 1. The ecliptic sensor of Helios 1 measures dust particles which have trajectories with elevations from ?45° to + 55° with respect to the ecliptic plane. The south sensor detects dust particles with trajectory elevations from ?90° (ecliptic south-pole) to ?4°. The ecliptic sensor is covered by a thin film (3000 Å parylene coated with 750 Å aluminium) as protection against solar radiation. The other sensor is shielded by the spacecraft rim from direct sunlight and has an open aperture. Micrometeoroids are detected by the electric charge produced upon impact. During the first 6 orbits of Helios 1 around the sun the experiment registered a total of 168 meteoroids, 52 particles were detected by the ecliptic sensor and 116 particles by the south sensor. This excess of impacts on the south sensor with regard to the impacts on the ecliptic sensor is due predominantly to small impacts which are characterized by small pulse heights of the charge signals. But also large impacts were statistically significantly more abundant on the south sensor than on the ecliptic sensor. Most impacts on the ecliptic sensor were observed when it was pointing in the direction of motion of Helios (apex direction). In contrast to that the south sensor detected most impacts when it was facing in between the solar and antapex direction. Orbit analysis showed that the “apex” particles which are predominantly detected by the ecliptic sensor have eccentricities e < 0.4 or semi-major axes a ? 0.5 AU. From a comparison with corresponding data from the south sensor it is concluded that the average inclination f of “apex” particles is -i < 30°. The excess of impacts on the south sensor, called “eccentric” particles, have orbit eccentricities e > 0.4 and semimajor axes a > 0.5AU. β-meteoroids leaving the solar system on hyperbolic orbits are directly identified by the observed imbalance of outgoing (away from the sun) and ingoing particles. It is shown that “eccentric” particles, due to their orbital characteristics, should be observable also by the ecliptic sensor. Since they have not been detected by this sensor it is concluded that the only instrumental difference between both sensors, i.e. the entrance film in front of the ecliptic sensor, prevented them from entering it. A comparison with penetration studies proved that particles which do not penetrate the entrance film must have bulk densities ρ(g/cm3) below an upper density limit ρmax. It is shown that approximately 30% of the “eccentric” particles have densities below ρmax = 1 g/cm3.  相似文献   

6.
We calculate the position of dust trails from comet 8P/Tuttle, in an effort to explain unusual Ursid meteor shower outbursts that were seen when the comet was near aphelion. Comet 8P/Tuttle is a Halley-type comet in a 13.6-year orbit, passing just outside of Earth's orbit. We find that the meteoroids tend to be trapped in the 12:14 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes 6 centuries to decrease the perihelion of the meteoroid orbits enough to intersect Earth's orbit, during which time the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the 6-year lag between the comet's return and Ursid outbursts. The resonances also prevent dispersion along the comet orbit and limit viewing to only one year in each return. We identified past dust trail encounters with dust trails from 1392 (Dec. 1945) and 1378 (Dec. 1986) and predicted another outburst on 2000 December 22 at around 7:29 and 8:35 UT, respectively, from dust trails dating to the 1405 and 1392 returns. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan, and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06±07 UT, December 22, at zenith hourly rate ∼90 per hour, and the Ursid rates were above half peak intensity during 4.2 h. We find that most Ursid orbits do scatter around the anticipated positions, confirming the link with comet 8P/Tuttle and the epoch of ejection. The 1405 and 1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. This work is the strongest evidence yet for the relevance of mean motion resonances in Halley-type comet dust trail evolution.  相似文献   

7.
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L?=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.  相似文献   

8.
We present observations of the extended dust structures near the orbits of three short-period comets: 2P/Encke, 22P/Kopff, and 65P/Gunn. The dust trails were originally discovered by the Infrared Astronomical Satellite (IRAS). Our observations were made using wide-field optical CCD cameras on the University of Hawaii 2.24-m telescope, the Canada-France-Hawaii 3.6-m telescope, and the Kiso 1.05-m Schmidt telescope. We compared the observed images with models and found that the extended structures seen around 2P/Encke and 22P/Kopff before perihelion passage were most likely “dust trails,” whereas images taken after perihelion passage show a high contamination by recently released particles (i.e., particles in Neck-Line structures are visible). We could not confirm the existence of a dust trail from 65P/Gunn within the field of view of the camera used. The effective sizes of the particles responsible for the scattered light were estimated at 1-100 mm (2P/Encke), 1-10 mm (22P/Kopff), and 100 μm-1 mm (65P/Gunn), respectively, which is consistent with previous studies of dust trails made with infrared space telescopes and optical telescopes. We evaluated the mass loss rates of these comets, averaged over their orbits, as reaching (2P/Encke), (22P/Kopff), and (65P/Gunn). These values are consistent with previous work. Therefore, the total amount of material ejected from these three comets is , which would contribute a considerable fraction of the lost within 1 AU that needs to be replaced if the zodiacal cloud is to be maintained in a steady state. We also found that the particles in the dust structures are significantly redder than the Sun and the zodiacal light, and might be redder than the average short-period comet nuclei. Specifically, the reflectivity gradients of 2P/Encke, 22P/Kopff, and 65P/Gunn are 13±7 (% 103 Å−1), 20±5 (% 103 Å−1), and 15±4 (% 103 Å−1), respectively. We examined the change in color with distance from the nucleus. No clear correlation was detected for 2P/Encke or 22P/Kopff to an accuracy of 3-11%, while the 65P/Gunn tail did show color variation, becoming redder with increasing distance from the nucleus. This dark red material, consisting of particles of sand-cobble size, has marginally escaped from the nuclei and will evolve into finer-grained interplanetary dust particles after subsequent collisions.  相似文献   

9.
The photometric JHKLM observations of the symbiotic novae V1016 Cyg and HM Sge in 1978–1999 are presented. Parameters of the cool stars themselves and the dust envelopes are estimated. The periods of 470±5 days (for V1016 Cyg) and 535±5 days (for HM Sge) are reliably determined from the entire set of our photometric J data for V1016 Cyg and HM Sge. In addition, monotonic light and color variations are observed on a time scale of several thousand days, with the increase in infrared brightness occurring with the simultaneous decrease in infrared color indices; i.e., the dust envelopes in which both components of the systems were embedded before the outburst of their hot sources in 1964 and 1975, respectively, had continued to disperse until late 1999. The amplitudes of these variations for HM Sge are almost twice those for V1016 Cyg. For HM Sge, the dust envelope reached a maximum density near JD 2447500 and then began to disperse. In the case of V1016 Cyg, a maximum density of the dust envelope was probably reached near JD 2444800, and its dispersal has been continuing for about 20 years. Thus, in both symbiotic novae, their dust envelopes reached a maximum density approximately eight years after the outburst of the hot component and then began to disperse. An analysis of the color-magnitude (J–K, J) diagram reveals that grains in the dust envelopes of V1016 Cyg and HM Sge are similar in their optical properties to impure silicates. The observed [J–K, K–L] color variations for the symbiotic novae under study can be explained in terms of the simple model we chose by variations in the Mira's photospheric temperature from 2400 to 3000 K and in the dust-envelope optical depth from 1 to 3 at a wavelength of 1.25 µm for a constant grain temperature. The observed J–K and K–L color indices for both symbiotic novae, while decreasing, tend to the values typical of Miras. The dust envelopes of both symbiotic novae are optically thick. The dust envelope around HM Sge is, on the average, twice as dense as that around V1016 Cyg; the Mira in V1016 Cyg is slightly cooler (~2800–2900 K) than that in HM Sge (~2600–2700 K). The dust-envelope density decreases as the Mira's temperature increases. The absolute bolometric magnitudes are $ - 5\mathop .\limits^m 1 \pm 0\mathop .\limits^m 15$ for V 1016 Cyg and $5\mathop .\limits^m 27 \pm 0\mathop .\limits^m 17$ for HM Sge. Their distances are 2.8±0.6 and 1.8±0.4 kpc, respectively; the luminosities and radii of their cool components (Miras) are 8.6×103 L , 1×104 L , 500R , and 540R . The radii of their dust envelopes are 1400R and 1500R ; the masses are (3?3.3) × 10?5M and (4?8) × 10?5M The dust envelope of V1016 Cyg disperses slower than that of HM Sge by almost a factor of 25.  相似文献   

10.
T.A. Ellis 《Icarus》2008,194(1):357-367
Intensity profiles were obtained for the C2 and CN emission and blue continuum of Comet Bradfield (1987s), from observations obtained over a 10 week period starting shortly before perihelion. Model intensity profiles were produced and then fitted to the observed profiles, and used to put constraints on some of the dust and gas parameters. Most of these parameters, including the gas and dust outflow speeds from the cometary nucleus and the molecular lifetimes, were consistent with expected values. The best fitting models incorporate significant dust particle fragmentation and extended emission of CN from dust, both occurring in the inner coma. In addition, although there may have been enhancement of gas and dust emission on the sunward side of the cometary nucleus, it appears that the tailward side maintained a significant level of activity.  相似文献   

11.
The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe CMEs in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be ~1.5R s (solar radii), which coincides with the distance at which the Alfvén speed profile has a minimum value. We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfvén speed peaks (~3R s?–?4R s). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5R s to 4R s. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (~1.5R s) of STEREO CMEs at the time of type II bursts is smaller than that (2.2R s) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1R s?–?2R s by the time the CME left the LASCO field of view.  相似文献   

12.
We measured the brightness of the white light corona at the total solar eclipses on 1 August 2008 and 22 July 2009, when solar activity was at its lowest in one hundred years. After careful calibration, the brightness of the corona in both eclipses was evaluated to be approximately 0.4×10?6 of the total brightness of the Sun, which is the lowest level ever observed. Furthermore, the total brightness of the K+F-corona beyond 3R in both eclipses is lower than some of the previous measurements of the brightness of the F-corona only. Our accurate measurements of the coronal brightness provide not only the K-corona brightness during a period of very low solar activity but also a reliable upper limit of the brightness of the F-corona.  相似文献   

13.
The Umov effect manifests itself as an inverse correlation between the linear polarization maximum of an object’s scattered light Pmax and its geometric albedo A. This effect is observed for the Moon, Mercury and Mars, and there are data suggesting this effect is valid for asteroids. The Umov effect is due to the contribution of interparticle multiple scattering that increases albedo and decreases polarization. We here study if the Umov effect can be extended to the case of single irregularly shaped particles with sizes comparable with the wavelength. This, in particular, is important for cometary dust polarimetry. We show the Umov effect being valid for weakly absorbing irregular particles (Im(m) ? 0.02) almost through the entire range of size parameters x considered. Highly absorbing particles (Im(m) > 0.02) follow the Umov effect only if x exceeds 14. In the case of weakly absorbing particles, the inverse correlation is essentially non-linear, which is caused by the contribution of particles with small x. However, averaging over many different types of irregularly shaped particles could make it significantly more linear. The size averaging does not change qualitatively the diagram log(Pmax)-log(A) for weakly absorbing particles. For single irregular particles whose sizes are comparable with wavelength, there is no reliable correlation between the slope of the polarization curve h near the inversion phase angle and geometric albedo A. Using the extended Umov Law, we estimate the geometric albedo of dust particles forming cometary circumnuclear haloes = 0.1 − 0.2, which is a few times larger than the average geometric albedo over the entire comae. Note that, using the obtained values for A of cometary particles, one can derive their number density in circumnuclear haloes from photometric observations.  相似文献   

14.
Asteroidal dust particles resulting from family-forming events migrate from their source locations in the asteroid belt inwards towards the Sun under the effect of Poynting-Robertson (PR) drag. Understanding the distribution of these dust particle orbits in the inner solar system is of great importance to determining the asteroidal contribution to the zodiacal cloud, the accretion rate by the Earth, and the threat that these particles pose to spacecraft and satellites in near-Earth space. In order to correctly describe this distribution of orbits in the inner solar system, we must track the dynamical perturbations that the dust particle orbits experience as they migrate inwards. In a seminal paper Öpik (1951) determines that very few of the μm-cm sized dust particles suffer a collision with the planet face as they decay inwards past Mars. Here we re-analyze this problem, considering additionally the likelihood that the dust particle orbits pass through the Hill sphere of Mars (to various depths) and experience potentially significant perturbations to their orbits. We find that a considerable fraction of dust particle orbits will enter the Hill sphere of Mars. Furthermore, we find that there is a bias with inclination, particle size, and eccentricity of the particle orbits that enter the Martian Hill sphere. In particular the bias with inclination may create a bias towards higher-inclination sources in the proportions of asteroid family particles that reach near-Earth space.  相似文献   

15.
《Icarus》1987,72(2):437-467
A systematic search has been made for as yet unrecognized eccentric and inclined features in Saturn's outer C ring. The radii of all sharp-edged features in the outer C ring were measured in Voyager data consisting of six high-resolution images, the Photopolarimeter occultation data, and the Radio Science λ3.6-cm occultation data corrected for the effects of diffraction. Besides the well-known Maxwell ringlet at 87,491 km (1.450Rs), whose eccentric shape and kinematics have already been studied, two other narrow ringlets at 88,716 km (1.470RS), and 90,171 km (1.495RS) have been found to be demonstrably eccentric. The former has a mean width of ∼16 km and is located within a gap ∼30 km wide. The latter has a mean width of ∼62 km and is only partially isolated: its outer edge is defined by a gap ∼15 km wide. Though a coincidence of these two gaps with the Mimas 3:1 inner vertical and inner Lindblad resonances has been noted by previous workers, we find that neither ringlet shows conclusive evidence for the anticipated resonantly forced distortions. The 1.495RS ringlet is best fitted by a model describing a freely precessing Keplerian ellipse with a radial amplitude of 2.8 ± 0.5 km. Neither a resonant forcing nor a free precession model fitted to the 1.470RS ringlet provides conclusive results, though the latter is marginally better, yielding an amplitude no larger than ∼2.2 km. These two newly identified eccentric ringlets are compared with the previously studied Titan and Maxwell ringlets (C. Porco, P. D. Nicholson, N. Borderies, G. E. Danielson, P. Goldreich, J. B. Holberg, and A. L. Lane, Icarus 60 (1984), 1–16) and with the Uranian α, β, and ϵ ring.  相似文献   

16.
Infrared spectral observations of Mars, Jupiter, and Saturn were made from 100 to 470 cm?1 using NASA's G. P. Kuiper Airborne Observatory. Taking Mars as a calibration source, we determined brightness temperatures of Jupiter and Saturn with approximately 5 cm?1 resolution. The data are used to determine the internal luminosities of the giant planets, for which more than 75% of the thermally emitted power is estimated to be in the measured bandpass: for Jupiter LJ = (8.0 ± 2.0) × 10?10L and for Saturn LS = (3.6 ± 0.9) × 10?10. The ratio R of thermally emitted power to solar power absorbed was estimated to be RJ = 1.6 ± 0.2, and RS = 2.7 ± 0.8 from the observations when both planets were near perihelion. The Jupiter spectrum clearly shows the presence of the rotational ammonia transitions which strongly influence the opacity at frequencies ?250 cm?1. Comparison of the data with spectra predicted from current models of Jupiter and Saturn permits inferences regarding the structure of the planetary atmospheres below the temperature inversion. In particular, an opacity source in addition to gaseous hydrogen and ammonia, such as ammonia ice crystals as suggested by Orton, may be necessary to explain the observed Jupiter spectrum in the vicinity of 250 cm?1.  相似文献   

17.
During its cruise phase, prior to encountering Jupiter, the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft returned time of flight mass spectra (TOF MS) of two interplanetary dust particles. Both particles were found to be iron-rich, with possible traces of hydrogen, carbon, nickel, chromium, manganese, titanium, vanadium and minor silicates. Carbon, hydrogen, oxygen and potassium are also present as possible contaminants of the impact target of CDA. Silicates and magnesium do not feature predominantly in the spectra; this is surprising considering the expected dominance of silicate-rich minerals in interplanetary dust particles. The particle masses are and . The corresponding radii ranges for the particles, assuming densities from 7874-2500 kg m−3 are 0.7-4 μm and 2.6-6.8 μm, respectively. With the same density assumptions the β values (ratio of radiation pressure to gravitational force) are estimated as 0.027-0.21 and 0.016-0.06 respectively, allowing possible orbits to be calculated. The resulting orbits are bound and prograde with semi-major axes, eccentricities and inclinations in the region of 0.3-1.26 AU, 0.4-1.0 and 0-60° for the first particle and 0.8-2.5 AU, 0.2-0.9 and 0-30° for the second. The more probable orbits within these ranges indicate that the first particle is in an Aten-like orbit, whilst the second particle is in an Apollo-like orbit, despite both grains having very similar, predominantly metallic compositions. Other possible orbital solutions for both particles encompass orbits which more closely resemble those of Jupiter-family comets.  相似文献   

18.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

19.
By telescopic tracking, we have established that the transneptunian object (TNO) 2000 CR105 has a semimajor axis of 220±1 AU and perihelion distance of 44.14±0.02 AU, beyond the domain which has heretofore been associated with the “scattered disk” of Kuiper Belt objects interacting via gravitational encounters with Neptune. We have also firmly established that the TNO 1995 TL8 has a high perihelion (of 40.08±0.02 AU). These objects, and two other recent discoveries which appear to have perihelia outside 40 AU, have probably been placed on these orbits by a gravitational interaction which is not strong gravitational scattering off of any of the giant planets on their current orbits. Their existence may thus have profound cosmogonic implications for our understanding of the formation of the outer Solar System. We discuss some viable scenarios which could have produced these objects, including long-term diffusive chaos and scattering off of other massive bodies in the outer Solar System. This discovery implies that there must be a large population of TNOs in an “extended scattered disk” with perihelia above the previously suggested 38 AU boundary. The total population is difficult to estimate due to the ease with which such objects would have been lost. This illustrates the great value of frequent and well time-sampled recovery observations of trans-neptunian objects within their discovery opposition.  相似文献   

20.
Linear and nonlinear analysis are presented for an electronegative dusty plasma system. Linear analysis shows that the dispersive nature of the plasma system changes considerably due to the presence of nonthermal q-nonextensive distributed electrons. The presence of both compressive and rarefactive Sagdeev solitons is investigated and shown that the addition of even a small population of dust particles will significantly modify the large amplitude Sagdeev solitons. The coexistence of both compressive and rarefactive solitons for a certain set of parameters is also noticed in such system. The effect of variation of entropic index q, θ i (ratio of positive ion temperature to electron temperature), θ n (ratio of negative ion temperature to electron temperature) and dust particles concentration (R) is elaborated with the help of suitable parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号