首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The near-infrared (NIR) extinction power-law index (β) and its uncertainty is derived from three different techniques based on star counts, colour excess and a combination of them. We have applied these methods to Two Micron All Sky Survey (2MASS) data to determine maps of β and NIR extinction of the small cloud IC 1396 W. The combination of star counts and colour excess results in the most reliable method to determine β. It is found that the use of the correct β map to transform colour excess values into extinction is fundamental for column density profile analysis of clouds. We describe how artificial photometric data, based on the model of stellar population synthesis of the Galaxy, can be used to estimate uncertainties and derive systematic effects of the extinction methods presented here. We find that all colour excess based extinction determination methods are subject to small but systematic offsets, which do not affect the star counting technique. These offsets occur since stars seen through a cloud do not represent the same population as stars in an extinction-free control field.  相似文献   

2.
The Ulysses spacecraft orbits the Sun on a highly inclined orbit, and the impact ionization dust detector on board continuously measures interstellar dust grains with masses up to , penetrating deep into the Solar System. The flow direction is close to the mean apex of the Sun's motion through the local interstellar cloud (LIC), and the grains act as tracers of the physical conditions in the LIC. Previous analysis gave a velocity dispersion of up to 40° for the interstellar grains. We partially re-analyzed the Ulysses interstellar dust data set, taking into account the detector's inner side walls. As the side walls have a sensitivity for dust impact detection almost identical to that of the instrument's target area, wall impactors must be taken into account for estimating the intrinsic velocity dispersion of the interstellar impactors and the interstellar dust flux value. Neglect of the sensor side walls overestimates the interstellar dust stream velocity dispersion by about 30% and the interstellar dust flux by about 20%.  相似文献   

3.
We calculate the electric surface potential reached by small dust particles in cometary atmospheres and in interplanetary space. Plasma temperature and density are varied over a wide range; a two component plasma of ions and electrons in thermodynamic equilibrium is assumed. The calculations are performed for three types of grains whose photoelectric and secondary electron emission yield are choosen to cover about the range expected for real dust. Results for vanishing secondary electron emission are given for comparison. At the beginning, a short review of the theoretical formulation and the main assumptions are presented. Wir berechnen das Oberflächenpotential kleiner Staubteilchen im Plasma einer Kometenatmosphäre und im interplanetaren Raum. Die Plasma-parameter Temperatur und Dichte werden in einem weiten Bereich variiert, es wird jedoch stets thermodynamisches Gleichgewicht zwischen Elektronen und Ionen eines Zweikomponentenplasmas angenommen. Die Rechnungen werden für drei Teilchenmaterialien ausgeführt, deren Photo-effekt und Sekundärelektronenausbeute etwa den an realen Staubteilchen vorkommenden Bereich überdecken dürften; zum Vergleich werden auch die Ergebnisse bei vernachlässigbarer Sekundärelektronenausbeute mitgeteilt. Eine kurze Zusammenfassung der theoretischen Grundlagen und der wesentlichen Voraussetzungen ist den Rechnungen vorangestellt.  相似文献   

4.
Experiments to investigate the effect of impacts on side-walls of dust detectors such as the present NASA/ESA Galileo/Ulysses instrument are reported. Side walls constitute 27% of the internal area of these instruments, and increase field of view from 140° to 180°. Impact of cosmic dust particles onto Galileo/Ulysses Al side walls was simulated by firing Fe particles, 0.5-5 μm diameter, 2-50 km s−1, onto an Al plate, simulating the targets of Galileo and Ulysses dust instruments. Since side wall impacts affect the rise time of the target ionization signal, the degree to which particle fluxes are overestimated varies with velocity. Side-wall impacts at particle velocities of 2-20 km s−1 yield rise times 10-30% longer than for direct impacts, so that derived impact velocity is reduced by a factor of ∼2. Impacts on side wall at 20-50 km s−1 reduced rise times by a factor of ∼10 relative to direct impact data. This would result in serious overestimates of flux of particles intersecting the dust instrument at velocities of 20-50 km s−1. Taking into account differences in laboratory calibration geometry we obtain the following percentages for previous overestimates of incident particle number density values from the Galileo instrument [Grün et al., 1992. The Galileo dust detector. Space Sci. Rev. 60, 317-340]: 55% for 2 km s−1 impacts, 27% at 10 km s−1 and 400% at 70 km s−1. We predict that individual particle masses are overestimated by ∼10-90% when side-wall impacts occur at 2-20 km s−1, and underestimated by ∼10-102 at 20-50 km s−1. We predict that wall impacts at 20-50 km s−1 can be identified in Galileo instrument data on account of their unusually short target rise times. The side-wall calibration is used to obtain new revised values [Krüger et al., 2000. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457-1471; 2003. Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170-187] of the Galilean satellite dust number densities of 9.4×10−5, 9.9×10−5, 4.1×10−5, and 6.8×10−5 m−3 at 1 satellite radius from Io, Europa, Ganymede, and Callisto, respectively. Additionally, interplanetary particle number densities detected by the Galileo mission are found to be 1.6×10−4, 7.9×10−4, 3.2×10−5, 3.2×10−5, and 7.9×10−4 m−3 at heliocentric distances of 0.7, 1, 2, 3, and 5 AU, respectively. Work by Burchell et al. [1999b. Acceleration of conducting polymer-coated latex particles as projectiles in hypervelocity impact experiments. J. Phys. D: Appl. Phys. 32, 1719-1728] suggests that low-density “fluffy” particles encountered by Ulysses will not significantly affect our results—further calibration would be useful to confirm this.  相似文献   

5.
The Chemical Analyser subsystem of the Cosmic Dust Analyser (CDA) aboard the Cassini spacecraft performs in situ measurements of the chemical composition of dust in space. The instrument records time-of-flight mass spectra of cations, extracted from the impact cloud that is created by high-velocity particle impacts onto the detector target. Thus, the spectra not only show signals of particle components but also of ions from the target material and target contamination. The aim of this work is to determine which non-particle ions are to be expected in the spectra obtained in space operation at Saturn.We present an analysis of the contamination state of the instrument's impact target. Beside investigations of the purity of the rhodium target surface, spectra from CDA calibration experiments at the dust accelerator facility are evaluated with regard to contamination signatures. Furthermore, contamination mass lines in spectra obtained by impacts of Jovian and Saturnian dust stream particles are analysed. Due to their small size and high speed, stream particle impacts predominantly produce ions from the target material and therefore the spectra are excellent probes of the contamination state of the target operating in space. With the exception of adsorbed hydrogen and carbon, the level of contamination is very low.Implications for CDA spectra of Saturnian E ring particle impacts are derived. The findings confirm the published interpretations. The low level of alkali metal contamination implies a significant sodium contribution in the composition of E ring ice particles. Additionally, ionisation thresholds for the occurrence of contamination mass lines can be utilised to set limits for the impact velocity.  相似文献   

6.
Capture of high-speed (hypervelocity) particles in aerogel at ambient temperatures of 175-763 K is reported. This extends previous work which has mostly focussed on conducting experiments at ambient laboratory temperatures, even though aerogels are intended for use in cosmic dust capture cells in space environments which may experience a range of temperatures (e.g., the NASA Stardust mission which collected dust at 1.81 AU and putative Mars atmospheric sampling missions). No significant change in track length (normalised to impactor size) was found over the range 175-600 K, although at 763 K a significant reduction (30%) was found. By contrast, entrance hole diameter remained constant only up to 400 K, above this sudden changes of up to 50% were observed. Experiments were also carried out at normal laboratory temperature using a wide range of aerogel densities and particle sizes. It was found that track length normalised to particle size varies inversely with aerogel density. This is a power law dependence and not linear as previously reported, with longer tracks at lower densities. Glass projectiles (up to 100 μm size) were found to undergo a variety of degrees of damage during capture. In addition to the well known acquisition of a coating (partial or complete) of molten aerogel the mechanical damage includes pitting and meridian fractures. Larger (500 μm diameter) stainless steel spheres also showed damage during capture. In this case melting and ablation occurs, suggesting surficial temperatures during impact in excess of 1400 °C. The response of the aerogel itself to passage of particles through it is reported. The presence of fan-like fractures around the tracks is attributed to cone cracking similar to that in glasses of normal density, with the difference that here it is a repetitive process as the particles pass through the aerogel.  相似文献   

7.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

8.
9.
We study the effect of particle interaction models on the theoretical estimates of atmospheric antiproton flux by comparing the BESS observations of antiproton spectra with the spectra obtained by means of a full three dimensional Monte Carlo simulation program. For such a purpose, we use two popular microscopic interaction models, namely FLUKA and UrQMD, to simulate antiproton spectra at multiple observation levels. In this article, we further compare the atmospheric antiproton fluxes predicted by a few popular microscopic high energy particle interaction models with each other to get an idea about the influence of such models at energies beyond the BESS upper cutoff up to about 100 GeV. We find that the simulated antiproton flux has strong dependence on the choice of interaction models. The present analysis seems to further indicate that the theoretical prediction of galactic antiproton spectrum may be uncertain by an appreciable amount due to our limited knowledge of particle interaction characteristics.  相似文献   

10.
Bulk precipitation and stream water chemistry data from 1993 to 2005 are used to analyze the relationship between Eurasian dust storms and nutrient deposition rates in the Kutsuki experimental forest (near Lake Biwa). From 2000 to 2005, atmospheric deposition, total nitrogen (TN), total phosphorus (TP) and dissolved silica (DSi) deposition rates increased by 26%, 132%, and 38%, respectively in the Kutsuki experimental forest. These TN and TP increases are associated with three seasonal factors: the increasing frequency and intensity of Eurasian spring dust events (March/April); the annual typhoon period (late August/September); and autumn/early winter (October to December) monsoons. The annual typhoon and monsoon winter periods are drivers for atmospheric TP and DSi deposition due to the correlation between the deposition and precipitation. In addition, increased spring dust deposition is a primarily driver for TN deposition changes. Increased emissions from urbanized areas in China (and likely Korea) affect the chemical properties of aerosols reaching downwind Japanese regions. Aerosol processes are responsible for increasing TN in aerosols, which are affected primarily by anthropogenic emissions. From 2000 to 2005, coal burning emissions from East Asia have contributed to an increase in TP (and possibly DSi) deposition rates. The observed increase in nutrient deposition did not noticeably impact short-term (5 year) stream water fluxes in the Kutsuki experimental forest. Due to plant uptake, the forest ecosystem retained atmospherically deposited N and P. Finally, the observed increases in nutrient deposition rates over the East China Sea and the Sea of Japan may significantly influence intra-annual net primary production. It is recommended that earth system modelling incorporate changes in atmospheric nutrient deposition rates and their impacts on the regional carbon cycle as well as aquatic and terrestrial ecosystems.  相似文献   

11.
12.
Energetic particles in a turbulent medium can be subject to second-order Fermi acceleration due to scattering on moving plasma waves. This mechanism leads to growing particle momentum dispersion and, at the same time, increases the mean particle energy. In the most frequently met situations both processes can be represented by a single momentum diffusion term in the particle kinetic equation. In the present paper we discuss the conditions allowing the additional term for regular acceleration to arise. For forward-backward asymmetric scattering centres, besides the diffusive term one should explicitly consider the regular acceleration term in momentum space, which can consist of the first-order (∝ V), as well as the second-order (∝ V2) part in the wave velocity V. We derive the condition for the scattering probability in the wave rest frame requied for vanishing the regular acceleration term and provide a simple mechanical example illustrating the theoretical concepts. Finally, we address its possible role in cosmic ray acceleration processes.  相似文献   

13.
14.
We present a new experimental result of fragment spin-rate in impact disruption, using a thin glass plate. A cylindrical projectile impacts on a side (edge) of the plate. Dispersed fragments are observed using a high-speed camera and the spin rates of fragments are measured. We find that the measured fragment spin-rate decreases with increasing size. Assuming that the rotational energy of fragments is supplied from the residual stress, the spin rate ω decreases with increasing fragment size r as ωr−1, which explains the above experimental results. This size-dependence is similar to that of the observed spin rates of small fast-rotating asteroids. Our results suggest that spin rates of fragments of small asteroids immediately after disruption may have a similar size-dependence, and can provide constraints on the subsequent spin-state evolution of small asteroids due to thermal torques.  相似文献   

15.
We determined the morphologies and dimensions of possible impact craters on the surface of Asteroid 25143 Itokawa from images taken by the Hayabusa spacecraft. Circular depressions, circular features with flat floors or convex floors, and circular features with smooth surfaces were identified as possible craters. The survey identified 38 candidates with widely varying morphologies including rough, smooth and saddle-shaped floors, a lack of raised rims and fresh material exposures. The average depth/diameter ratio was 0.08±0.03: these craters are very shallow relative to craters observed on other asteroids. These shallow craters are a result of (1) target curvature influencing the cratering process, (2) raised rim not being generated by this process, and (3) fines infilling the craters. As many of the crater candidates have an unusual appearance, we used a classification scheme that reflects the likelihood of an observed candidate's formation by a hypervelocity impact. We considered a variety of alternative interpretations while developing this scheme, including inherited features from a proto-Itokawa, spall scars created by the disruption of the proto-Itokawa, spall scars following the formation of a large crater on Itokawa itself, and apparent depressions due to random arrangements of boulders. The size-frequency distribution of the crater candidates was close to the empirical saturation line at the largest diameter, and then decline with decreasing diameter.  相似文献   

16.
The movement of small dust particles due to electrostatic forces, seismic activity and micrometeoroid bombardment has been hypothesized to occur on the Moon and asteroids. There currently exists significant uncertainty in the method of launching these small dust particles, which in turn makes the selection of accurate initial conditions for numerical simulations difficult. We evaluate the electric field strength required to launch small particles given surface gravitation, cohesion and seismic shaking. We find that the electric field strength required for dust particle launching is dominated by the cohesive force for micron-sized dust particles. There exists an intermediate dust particle size that requires the least electric field strength to launch. We see that the inclusion of the cohesive force significantly influences our understanding of dust lofting.  相似文献   

17.
Galactic cosmic rays are a potential energy source to stimulate organic synthesis from simple ices. The recent detection of organic molecules at the polar regions of the Moon by LCROSS (Colaprete, A. et al. [2010]. Science 330, 463–468, http://dx.doi.org/10.1126/science.1186986), and possibly at the poles of Mercury (Paige, D.A. et al. [2013]. Science 339, 300–303, http://dx.doi.org/10.1126/science.1231106), introduces the question of whether the organics were delivered by impact or formed in situ. Laboratory experiments show that high energy particles can cause organic production from simple ices. We use a Monte Carlo particle scattering code (MCNPX) to model and report the flux of GCR protons at the surface of the Moon and report radiation dose rates and absorbed doses at the Moon’s surface and with depth as a result of GCR protons and secondary particles, and apply scaling factors to account for contributions to dose from heavier ions. We compare our results with dose rate measurements by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) experiment on Lunar Reconnaissance Orbiter (Schwadron, N.A. et al. [2012]. J. Geophys. Res. 117, E00H13, http://dx.doi.org/10.1029/2011JE003978) and find them in good agreement, indicating that MCNPX can be confidently applied to studies of radiation dose at and within the surface of the Moon. We use our dose rate calculations to conclude that organic synthesis is plausible well within the age of the lunar polar cold traps, and that organics detected at the poles of the Moon may have been produced in situ. Our dose rate calculations also indicate that galactic cosmic rays can induce organic synthesis within the estimated age of the dark deposits at the pole of Mercury that may contain organics.  相似文献   

18.
The transfer of polarized radiation in inhomogeneous circumstellar shells with a spheroidal spatial distribution of porous dust particles is computed. The grains are modeled by an MRN mixture of silicate and graphite particles. The optical properties of porous particles (considered separately in the Appendix) are computed by using effective medium theory and Mie theory. The following observational characteristics have been computed for WW Vul, a typical Herbig Ae star with Algol-like minima: the spectral energy distribution from the ultraviolet to the far infrared, the color-magnitude diagrams, the wavelength dependence of linear polarization, and the shell brightness distribution. The effect of grain porosity on the results is considered. It has been found that only moderate particle porosity (the volume fraction of matter is f ~0.5) can explain available observational data in terms of the approach used. Since radiation pressure must rapidly sweep submicron-sized grains out of the vicinity of Herbig Ae/Be stars, we briefly discuss how particle porosity can affect this process.  相似文献   

19.
The characteristics of Asian dust events that occurred in Northeast Asia during the springtime from 1993 to 2004 are investigated using 3-hourly SYNOP reports (World Meteorological Organization). Occurrences of blowing sand and dust storm are low in 1997 and 1999, but have increased rapidly since 2000. The maximum occurrence was recorded in 2002. Wind velocity of 6.5 m s− 1 as a threshold wind velocity is not so exactly consistent with the occurrence of blowing sand. However, wind velocity of 14 m s− 1 as a strong wind causing dust storm had similar tendency to those of dust storm and Dust Storm Index.Source regions of Asian dust are divided into three regions (A: dry arid, B: semi-arid, and C: cultivated), based upon the occurrence of blowing sand and dust storm. Eight meteorological stations are selected in three regions, which have frequent occurrences of blowing sand. Source regions of Asian dust that affect the Korean peninsula are gradually extending eastward. Positive anomalies of NDVI occurred in 1994, 1995, and 1998 when temperature was high and precipitation was heavy. However, the frequent occurrence of the dust phenomena is not always consistent with lots of vegetation, high temperature, and much precipitation in this study.  相似文献   

20.
Modeling results of the water vapor plume produced by a comet impact on the Moon and of the resulting water ice deposits in the lunar cold traps are presented. The water vapor plume is simulated near the point of impact by the SOVA hydrocode and in the far field by the Direct Simulation Monte Carlo (DSMC) method using as input the SOVA hydrocode solution at a fixed hemispherical interface. The SOVA hydrocode models the physics of the impact event such as the surface deformation and material phase changes during the impact. The further transport and retention processes, including gravity, photodestruction processes, and variable surface temperature with local polar cold traps, are modeled by the DSMC method for months after impact. In order to follow the water from the near field of the impact to the full planetary induced atmosphere, the 3D parallel DSMC code used a collision limiting scheme and an unsteady multi-domain approach. 3D results for the 45° oblique impact of a 2 km in diameter comet on the surface of the Moon at 30 km/s are presented. Most of the cometary water is lost due to escape just after impact and only ∼3% of the cometary water is initially retained on the Moon. Early downrange focusing of the water vapor plume is observed but the later material that is moving more slowly takes on a more symmetric shape with time. Several locations for the point of impact were investigated and final retention rates of ∼0.1% of the comet mass were observed. Based on the surface area of the cold traps used in the present simulations, ∼1 mm of ice would have accumulated in the cold traps after such an impact. Estimates for the total mass of water accumulated in the polar cold traps over 1 byr are consistent with recent observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号