首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For planetary landing missions, the capability to acquire samples of soil and rock is of high importance whenever complex analyses (e.g. isotopic studies) on these materials are to be carried out, or when samples are to be returned to Earth. Not only surface samples are of relevance, but in recent concepts at least for Mars landing missions also subsurface samples are required. Subsurface material on Mars is believed to have been protected from the inferred oxidants at the immediate surface while also being protected from the UV influx. Therefore, there is considerable hope that in subsurface soil samples on Mars, at least organic matter delivered by meteorites may be detected, and possibly also relics of earlier simple microbial life on the planet. Likewise, samples from the inside of Martian surface rocks promise to have been protected from weathering and for the same reason they are important for organic chemistry studies. In this paper, an overview is given of the development and science of two different subsurface sampling devices for the Beagle 2 lander of ESA's Mars Express mission, being a “Mole” subsurface soil sampler and a small rock coring and sampling mechanism. Besides their sampling function, both the Mole and the Corer/Grinder will provide data on physical properties of Martian soils and rock, respectively, through the way they interact with the sampled materials. Details of the Mole and Corer/Grinder design are presented, along with results of recent tests with prototypes in the laboratory on physically analogous sample materials.  相似文献   

2.
The stereo camera system (SCS) was designed to provide wide-angle multi-spectral stereo imaging of the Beagle 2 landing site. Based on the Space-X micro-cameras, the primary objective was to construct a digital elevation model of the area in reach of the lander's robot arm. The SCS technical specifications and scientific objectives are described; these included panoramic 3-colour imaging to characterise the landing site; multi-spectral imaging to study the mineralogy of rocks and soils beyond the reach of the arm and solar observations to measure water vapour absorption and the atmospheric dust optical density. Also envisaged were stellar observations to determine the lander location and orientation, multi-spectral observations of Phobos & Deimos and observations of the landing site to monitor temporal changes.  相似文献   

3.
The Mars climate database (MCD) is a database of statistics based on output from physically consistent numerical model simulations which describe the climate and surface environment of Mars. It is used here to predict the meteorological environment of the Beagle 2 lander site. The database was constructed directly on the basis of output from multiannual integrations of two general circulation models, developed jointly at Laboratoire de Météorologie Dynamique du Centre National de la Recherche Scientifique, France, and the University of Oxford, UK. In an atmosphere with dust opacities similar to that observed by Mars Global Surveyor, the predicted surface temperature at the time of landing (Ls=322°, 13:00 local time), is , and varying between ∼186 and over the Martian day. The predicted air temperature at above the surface, the height of the fully extended Beagle 2 robot arm, is at the time of landing. The expected mean wind near the surface on landing is north-westerly in direction, becoming more southerly over the mission. An increase in mean surface pressure is expected during the mission. Heavy global dust storm predictions are discussed; conditions which may only occur in the extreme as the expected time of landing is around the end of the main dust storm period. Past observations show approximately a one in five chance of a large-scale dust storm in a whole Mars year over the landing region, Isidis Planitia. This statistic results from observations of global, encircling, regional and local dust storms but does not include any small-scale dust “events” such as dust devils.  相似文献   

4.
5.
The limited depth of focus of microscope optics precludes the observation of a three-dimensional surface in a single view. For an efficient operation of a planetary microscope observing a highly irregular surface, an autofocus algorithm must detect partially focused views and merge them into a completely focused image (extended depth of focus). In this paper we investigate the suitability of different algorithms for autonomous image focusing onboard a Mars lander. We show that all methods under study, except for the Variance method, produce reasonable results and that their performance depends (amongst other factors) on sample morphology. For reasons of simplicity and reduced computational requirements we favor Gradient and Roberts methods and present an efficient implementation thereof.  相似文献   

6.
A suite of instruments on the Beagle 2 Mars lander was designed and built in order to investigate the environmental conditions at the landing site. The sensor suite was capable of measuring air temperature at two heights, surface level pressure, wind speed and direction, saltated particle momentum, UV flux (diffuse and direct at five wavelengths), the total accumulated radiation dose and investigating the nature of the oxidising environment. The scientific goals of the instruments are discussed within the context of current understanding of the environmental conditions on Mars, and the instruments themselves are described in detail. Beagle 2 landed on Mars in late 2003, as part of the ESA Mars Express mission. The expected lifetime of the lander on the surface was 180 sols, with a landing site in Isidis Planitia, but has not responded to attempts to contact it, and has now been declared lost. The Environmental Sensor Suite (ESS) was intended to monitor and characterise the current local meteorological parameters, investigating specific areas of scientific interest raised from previous missions, most notably dust transport and transient phenomena, and additionally to add context to the conditions that any possible martian micro-organisms would have to face. The design of the instrument suite was strongly influenced by mass limitations, with eight sensor subsystems having a total mass of approximately 100 g. Although Beagle 2 has been now declared lost, the scientific goals of an Environmental Sensors Suite still remain a valid target for any future astrobiology orientated missions.  相似文献   

7.
December 25th 2003 will see the Beagle 2 lander arrive at the surface of Mars in the Isidis region, allowing for the first time in situ measurements of ultraviolet (UV) flux directly from the surface of Mars through the use of a sensor designed as part of a miniaturised environmental package. The expected conditions the sensor will experience are studied here, and the detection signatures for phenomenon such as dust devils, H2O clouds ands near-surface fogs are presented. The beginning and end of mission surface fluxes show little variation, though the period towards mid-nominal mission does experience a maximum in total daily dose levels. Diurnal profiles are calculated highlighting the effects of increased scattering towards shorter wavelengths. A possible dust storm scenario is presented, and the effect upon component UV fluxes is shown to reverse the relative contributions of direct and diffuse components of the total UV flux. The presence of cloud formation above the landing site will be detectable though the observation of elevated diffuse/direct flux ratios. Near-surface morning fogs show a characteristic ‘dip’ in the morning profile when compared to clear mornings, allowing their detection on cloud-free mornings through post-event analysis of long term data. Predicted Phobos eclipses are investigated at each of the sensor centre wavelengths, and show greatest reduction in relative intensity at short wavelengths. Observations of near-miss eclipse events will also be possible, through monitoring of the diffuse UV flux. Dust devil encounters are shown to create a double minima lightcurve, with the depth of the minima dependent upon the total dust loading of the vortex. The effects of these changing conditions on DNA-weighted irradiances are investigated. Possible dust storms provide the greatest increase in biological protection, whereas expected cloud formations at the Beagle 2 site are found to offer negligible protection. Within just five minutes of landing >95% of any Bacillus subtilis-like bacteria present on the surface of the craft will have lost viability.  相似文献   

8.
The Isidis Planitia region on Mars usually is regarded as a comparably attractive site for landing missions based on engineering constraints such as elevation and smooth regional topography. The Mars Express landed element Beagle 2 was deployed to this area, and the southern margin of the basin was selected as one of the backup landing sites for the NASA Mars Exploration Rovers.Especially in the context of the Beagle 2 mission, Isidis Planitia has been discussed as a place which might have experienced a volatile-rich history with associated potential for biological activity [e.g. Bridges et al., 2003. Selection of the landing site in Isidis Planitia of Mars Probe Beagle 2. J. Geophys. Res. 108(E1), 5001, doi: 10.1029/2001JE001820]. However the measurements of by the GRS instrument on Mars Odyssey indicate a maximum inferred water abundance of only 3 wt% in the upper few meters of the surface [Feldman et al., 2004. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006, doi: 10.1029/2003JE002160]. Based on these measurements this area seems to be one of the driest spots in the equatorial region of Mars.To support future landing site selections we took a more detailed look at the minimum burial depth of stable ice deposits in this area, focusing as an example on the planned Beagle 2 landing site. We are especially interested in the likelihood of ground ice deposits within the range of proposed subsurface sampling tools as drills or ‘mole’-like devices [Richter et al., 2002. Development and testing of subsurface sampling devices for the Beagle 2 Lander. Planet. Space Sci. 50, 903-913] given reasonable physical constraints for the surface and near surface material.For a mission like ExoMars [Kminek, G., Vago, J.L., 2005. The Aurora Exploration Program—The ExoMars Mission. In: Proceedings of the 35th Lunar and Planetary Science Conference, abstract no. 1111, 15-19 March 2004, League City, TX] with a focus on finding traces of fossil life the area might be of potential interest, because these traces would be better conserved in the dry soil. Modeling and measurement indicate that Isidis Planitia is indeed a dry place and any hypothetical ground ice deposits in this region are out of range of currently proposed sampling devices.  相似文献   

9.
Intrinsic magnetic properties, like susceptibility, provide a precise determination of the iron phases with a penetration depth not available with other chemical and mineralogical sensing tools, thus allowing to unravel space weathering effects. Systematic measurements of meteorites demonstrate that susceptibility measurements on asteroid surface could be a very efficient way to assign a meteorite class to a given asteroid. Another application could be the characterization of the highly magnetic Martian regolith. On the other hand, natural remanent magnetization (NRM) measurements are crucial to interpret magnetic field anomalies such as those found on Mars and Moon, and likely to be found on Mercury. NRM gives also access to past magnetic fields and extinct planetary dynamo. Rugged, light and low consumption systems already exist for such measurements on Earth and we present a scheme to integrate both magnetic susceptibility (using a LC oscillator) and NRM (using a 3 axis fluxgate or a gradiometer) to offer a versatile instrument package for any mission involving a lander. For the LC oscillator calibration of the geometric factor is presented. The fluxgate can be used both for making local magnetic anomaly maps, thus investigating subsurface structures, and for evaluating NRM of individual boulders.  相似文献   

10.
Reevaluating the geologic history of the prior Mars landing sites provides important ground truth for recent and ongoing orbital missions. At the Viking 2 Lander (VL2) site, topographic measurements of relict landforms indicate that at least 100 m of sedimentary mantle material has been stripped away. The observed paucity of impact craters <100 m in diameter suggests that resurfacing processes (likely in the form of the recent deposition and removal of thin 1-10 m mantle layers) continue up to the present. A dearth of craters in the 100-500 m diameter range, however, also necessitates erosion of a thicker mantle layer. Partially inverted chains of secondary craters from nearby Mie Crater indicate that the mantle was already in place when the impact occurred. The density of craters superposed on Mie ejecta is consistent with a Late Hesperian age and provides a minimum age constraint for the mantle's emplacement. The thermophysical properties of the surface around VL2 as observed with Thermal Emission Imaging System (THEMIS) data indicate that the landing site occurs in an intracrater region that may typify mid to high northern latitude sites. Elevated thermal inertias of a pedestal crater superposed atop a larger pedestal crater suggest that rocky or indurated material can be created by impacts into sedimentary targets. Rock abundances at VL2 are consistent with the addition of impact-emplaced material from the missing small impact crater population documented in this study. Thus, the VL2 site may be a reasonable proxy for the landscape expected at the upcoming Phoenix Lander site.  相似文献   

11.
The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.  相似文献   

12.
Yu-Jong Wu  C.Y. Robert Wu 《Icarus》2011,214(1):228-235
A detailed theoretical study of the potential energy surface of H2CO3 is explored at the CCSD(T)//B3LYP/aug-cc-pVTZ level. On the potential energy surface, 12 isomers of H2CO3 are located. Their molecular properties such as geometries, vibrational frequencies, rotational constants, dipole moments, gas-phase acidities, and relative energies are calculated. Various reaction pathways and decomposition products have also been discussed. Among these products, CO2 and H2O are definitely the most favorable products with predominant abundance. Large energy barriers are predicted for other dissociation channels leading to the formation of oxygen, formaldehyde, and so on. These high energy channels are not important thermodynamically and kinetically, but they might occur in the presence of cosmic rays in astronomic environments. From the present work we suggest that chemical reactions between CO2 and H2O at the polar ice caps could be a potential source of H2CO and O2, in addition to the previously proposed mechanisms, i.e., the oxidation of methane and cosmic-ray-mediated production through the intermediate H2CO3. The results of the present work may provide useful data to improve our understanding of icy chemistry at the polar caps on Mars.  相似文献   

13.
Eileen M. McGowan 《Icarus》2011,212(2):622-628
The largest areal concentration of pitted cones on Mars is located in the southwest section of Utopia basin. This particular area of pitted cones has been attributed to mud volcanism; several factors may have facilitated extensive mud volcanism at this location. The concentration of pitted cones is located where Utopia basin intersects Isidis basin; both features are multi-ring impact basins. On Earth, seismic investigations have shown that the outer rings of the Chicxulub multi-ring impact basin extend to the Mohorovi?i? discontinuity (Moho). If this is true on Mars as well, the fractures could act as conduits for water from Utopia Planitia, the site of a large, putative water body. It has been shown that methane can be generated at the mantle on Earth. On Mars this possible source of methane could combine with the infiltrated water to generate clathrates. While methane is not currently being released at the location of the pitted cones it could have been in the past. Three locations of methane release have been observed on Mars, two of which are located on the same outer ring of Isidis basin that intersects the pitted cone population. The area of Utopia basin that contains the large population of pitted cones is adjacent to the highland/lowland boundary where extensive deposition would have occurred. Extensive deposition combined with the potential for methane release may have contributed to the large population of pitted cones in this area of the Utopia basin.  相似文献   

14.
Experiments were conducted under atmospheric pressures appropriate for Earth and Mars to determine the efficiency of sand in saltation as a means for raising dust into the atmosphere under wind speeds which would otherwise be too low for dust entrainment. Experiments involving intimate mixtures of sand and dust (1:1 ratio by mass) showed that after an initial flurry of activity of a few seconds duration, the bed stabilized with little movement of either sand or dust. In contrast, sands set into saltation upwind from dust beds were efficient in injecting the dust into suspension, with low-pressure Martian conditions being some five times more efficient than terrestrial conditions. This result is attributed to the higher kinetic energies of the saltating grains on Mars, which is a consequence of the higher velocities of the grains. These results suggest that sands saltating across dust beds on Mars are an effective means for setting dust into suspension.  相似文献   

15.
We present results of our morphologic and stratigraphic investigations in the Amenthes region for which our observations suggest a complex spatial and temporal interrelation between volcanic and possibly water-related processes. We have produced a series of self-consistent geological maps and a stratigraphic correlation chart that show the spatial and temporal distribution of volcanic, fluvial and tectonic processes.The Amenthes region consists of a broad trough-like topographic depression that has served as a path for the supply of materials from Hesperia Planum to Isidis Planitia. It is most likely that Hesperia Planum and, in particular the area north of Hesperia Planum, including Tinto Vallis, Palos crater and the surrounding dissected highlands have acted as a source region for materials that were transported into the Amenthes trough and farther into the Isidis basin. The Amenthes trough, as well as the graben of Amenthes Fossae were formed after the Isidis impact in the Noachian and represent likely the oldest features in the Amenthes region. Dendritic valley networks, that bear evidence for surface runoff, have dissected the highlands adjacent to Amenthes Planum and within the Tinto Vallis and Palos crater region before ∼3.7 Ga. The ridged volcanic plains located near the Palos crater and Tinto Vallis region, within Amenthes Planum as well as within the Isidis transitional plains were formed between ∼3.5 and 3.2 Ga and represent the volcanic activity which resulted in the flooding of the Amenthes trough. The sinuous channel of Tinto Vallis was formed in the Hesperian (?3.5 Ga) and shows characteristics, which are consistent with both ground water sapping and igneous processes. The Palos crater outflow channel was formed nearly at the same time as Tinto Vallis, between ∼3.5 Ga and ∼3.2 Ga and postdates the volcanic flooding of the Amenthes trough in the Hesperian. Small valleys (∼3.4-2.8 Ga) incised into the ridged plains of Amenthes Planum appear also within the transitional plains located between the Amenthes plains and the Isidis interior plains. Our model ages show that Tinto Vallis, the Palos crater outflow channel as well as the small valleys are unlikely formed at the same time and by the same processes as the dendritic valley networks and represent an episode that clearly postdates the volcanic activity.  相似文献   

16.
T.J. Ringrose  M.C. Towner 《Icarus》2003,163(1):78-87
Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. Previous work looking at the Viking Lander meteorological data highlighted seasonal changes in temporal occurrence of dust devils and gave an indication of typical dust devil diameter, size, and internal dynamics. The meteorological data from Viking Lander 2 for sols 1 to 60 have been revisited to provide detailed diurnal dust devil statistics. Results of our analysis show that the Viking Lander 2 experienced a possible 38 convective vortices in the first 60 sols of its mission with a higher occurrence in the morning compared to Earth, possibly as a result of turbulence generated by the Lander body. Dust devil events have been categorised by statistical confidence and intensity. Some initial analysis and discussion of the results is also presented. Assuming a similar dust loading to the vortices seen by Mars Pathfinder, it is estimated that the amount of dust lofted in the locality of the Lander is approximately 800 ± 10 kgsol−1km−2.  相似文献   

17.
The Medusae Fossae Formation (MFF) has long been thought to be of Amazonian age, but recent studies propose that a significant part of its emplacement occurred in the Hesperian and that many of the Amazonian ages represent modification (erosional and redepositional) ages. On the basis of the new formational age, we assess the hypothesis that explosive eruptions from Apollinaris Patera might have been the source of the Medusae Fossae Formation. In order to assess the likelihood of this hypothesis, we examine stratigraphic relationships between Apollinaris Patera and the MFF and analyze the relief of the MFF using topographic data. We predict the areal distribution of tephra erupted from Apollinaris Patera using a Mars Global Circulation Model (GCM) combined with a semi-analytical explosive eruption model for Mars, and compare this with the distribution of the MFF. We conclude that Apollinaris Patera could have been responsible for the emplacement of the Medusae Fossae Formation.  相似文献   

18.
J. Vaucher  N. Mangold  K. Kurita 《Icarus》2009,204(2):418-151
Central Elysium Planitia (CEP) is located south of Elysium Mons. Back to the era of the Viking orbiters, clues accumulated in favor of recent volcanism in relation with ground water release and the formation of long sub-parallel fissures. Four aqueous flood channel systems emanate from linear fissures. Recent eruptions of low viscosity lavas originate from these fissures and from low shield volcanoes. The objective of this paper is to constrain the volcanic history of this region, and to determine the chronological relationships with fluvial/erosional processes. New observations (e.g., new shield volcanoes and one new fluvial event) are summarized on a context map. Thirty-five surfaces have been dated from the count of about 15,000 impact craters. Ages have been cross-checked with relative stratigraphy when possible. A probabilistic approach has been introduced to compare similar ages and define periods of volcanic activity. Our results confirm that some volcanic features are extremely recent (∼2 My). Active periods are found at 2.5-3 My, 4.3 My, 13.5-16.2 My, 19 My, 21-32 My, 58 My, 71 My, 85-95 My, 134 My, 173 My and 234 My, not excluding the possibility that some of the gaps would be filled with additional crater counts. The volcanic activity thus extended for at least the last 250 My. The lava volumes have been estimated from the topographic modeling of the floor of depressions filled up by volcanic products, including the volumes of several large crater cavities buried under lavas (>20% of the total volume). Our new estimation of the total lava volume is 1.5 ± 0.2 × 105 km3. This value corresponds to an average thickness of one hundred meters of lavas for the young volcanic plain. As a consequence, the total eruption rate at CEP, defined as the total volume of lava divided by the time of emplacement 1.4 × 10−2-1.8 × 10−2 m3/s is lower than values typically estimated for terrestrial hot spots or large igneous provinces, suggesting longer inactive periods. The concept of mantle plumes responsible for terrestrial flood volcanism may not be applicable to the case of CEP and the mechanism proposed in Schumacher and Dreuer (2007) offers a plausible alternative to explain our observations.  相似文献   

19.
M. Grott  D. Breuer 《Icarus》2008,193(2):503-515
Estimates of the martian elastic lithosphere thickness Te imply that Te increased from around 20 km in the Noachian to about 70 km in the Amazonian period. A phase of rapid lithospheric growth is observed during the Hesperian and we propose that this elastic thickness history is a consequence of the martian crustal rheology and its thermal evolution. A wet crustal rheology is found to generate a mechanically incompetent layer in the lower crust during the early evolution and the rapid growth of Te during the Hesperian results from the disappearance of this layer due to planetary cooling. The incompetent layer and the related rapid lithospheric growth are absent for a dry basaltic crustal rheology, which is therefore incompatible with the observations. Furthermore, we find that the observed elastic thickness evolution is best compatible with a wet mantle rheology, although a dry mantle cannot be ruled out. It therefore seems likely that rheologically significant amounts of water were retained in the Martian crust and mantle after planetary accretion.  相似文献   

20.
The recent detection of up to ∼10 wt% water-equivalent H heterogeneously distributed in the upper meter of the equatorial regions of the martian surface and the presence of the 3-μm hydrations feature across the entire planet raises the question whether martian surficial dust can account for this water-equivalent H. We have investigated the H2O and CO2 adsorption properties of palagonitic dust (<5 μm size fraction of phyllosilicate-poor palagonitic tephra HWMK919) as a martian dust analog and two smectites under simulated martian equatorial surface conditions. Our results show that the palagonitic dust, which contains hydrated and hydroxylated volcanic glass of basaltic composition, accommodates significantly more H2O under comparable humidity and temperature conditions than do the smectites nontronite and montmorillonite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号