首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

2.
We have developed an artificial neural net detector for use on board Mars rovers that correctly identifies calcite under Mars analogue dust (JSC Mars-1 regolith simulant) layers up to ∼100 μm thickness and 80% aerial coverage. Both the detector output and the band depth of the ∼2300 nm CO=3 absorption are linearly related to the surface area of exposed calcite. This detector provides a means for rapid and robust automated recognition of calcite on Mars in areas of active aeolian erosion.  相似文献   

3.
T.J. Ringrose  M.C. Towner 《Icarus》2003,163(1):78-87
Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. Previous work looking at the Viking Lander meteorological data highlighted seasonal changes in temporal occurrence of dust devils and gave an indication of typical dust devil diameter, size, and internal dynamics. The meteorological data from Viking Lander 2 for sols 1 to 60 have been revisited to provide detailed diurnal dust devil statistics. Results of our analysis show that the Viking Lander 2 experienced a possible 38 convective vortices in the first 60 sols of its mission with a higher occurrence in the morning compared to Earth, possibly as a result of turbulence generated by the Lander body. Dust devil events have been categorised by statistical confidence and intensity. Some initial analysis and discussion of the results is also presented. Assuming a similar dust loading to the vortices seen by Mars Pathfinder, it is estimated that the amount of dust lofted in the locality of the Lander is approximately 800 ± 10 kgsol−1km−2.  相似文献   

4.
This work is devoted to the analysis of the variation of albedo measured by orbiting instruments with atmospheric opacity on Mars. The study has been conduced by analysing Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data from martian regions with different surface albedo.In support of these data, synthetic spectra with different surface albedo and atmospheric opacities have been computed, so that a comparison has been performed. The synthetic spectra have been retrieved by using two different grain sizes for suspended dust (0.5 and 1.2 μm), allowing a comparison between the two models and the observations.Using the DCI, a parameter describing the quantity of dust deposited on the surface, the effectiveness of the single scattering approximation has been tested for low atmospheric opacity by analysing the quality of the linear fit up to different atmospheric opacity.For more opaque conditions two kinds of fits have been applied to the data, linear and second-order degree polynomial. In this case, we found that the polynomial fit better describes the observations.The analysis of these data made it possible to notice a peculiar trend, already reported by Christensen (1988), of the albedo over Syrtis Major after the occurrence of dust storms, but, differently from that work, now the study of DCI together with atmospheric opacity and albedo allowed us to robustly confirm the hypothesis made by Christensen.Finally, the comparison between observations and synthetic spectra computed with models with different particles grain sizes indicates that dust particles of 0.5 μm diameter are the most effective to change the aerosol atmospheric opacity on Mars.  相似文献   

5.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

6.
The atmospheres of Mars and Titan are loaded with aerosols that impact remote sensing observations of their surface. Here we present the algorithm and the first applications of a radiative transfer model in spherical geometry designed for planetary data analysis. We first describe a fast Monte-Carlo code that takes advantage of symmetries and geometric redundancies. We then apply this model to observations of the surface of Mars and Titan at the terminator as acquired by OMEGA/Mars Express and VIMS/Cassini. These observations are used to probe the vertical distribution of aerosols down to the surface. On Mars, we find the scale height of dust particles to vary between 6 km and 12 km depending on season. Temporal variations in the vertical size distribution of aerosols are also highlighted. On Titan, an aerosols scale height of 80 ± 10 km is inferred, and the total optical depth is found to decrease with wavelength as a power-law with an exponent of −2.0 ± 0.4 from a value of 2.3 ± 0.5 at 1.08 μm. Once the aerosols properties have been constrained, the model is used to retrieve surface reflectance properties at high solar zenith angles and just after sunset.  相似文献   

7.
The LIDAR instrument operating from the surface of Mars on the Phoenix Mission measured vertical profiles of atmospheric dust and water ice clouds at temperatures around −65 °C. An equivalent lidar system was utilized for measurements in the atmosphere of Earth where dust and cloud conditions are similar to Mars. Coordinated aircraft in situ sampling provided a verification of lidar measurement and analysis methods and also insight for interpretation of lidar derived optical parameters in terms of the dust and cloud microphysical properties. It was found that the vertical distribution of airborne dust above the Australian desert is quite similar to what is observed in the planetary boundary layer above Mars. Comparison with the in situ sampling is used to demonstrate how the lidar derived optical extinction coefficient is related to the dust particle size distribution. The lidar measurement placed a constraint on the model size distribution that has been used for Mars. Airborne lidar measurements were also conducted to study cirrus clouds that form in the Earth’s atmosphere at a similar temperature and humidity as the clouds observed with the lidar on Mars. Comparison with the in situ sampling provides a method to derive the cloud ice water content (IWC) from the Mars lidar measurements.  相似文献   

8.
S.M. Metzger  M.C. Towner 《Icarus》2011,214(2):766-772
In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m−3 and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m−3 (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s−1 and vertical uplift of 2.7 m s−1 driving mean vertical TSP flux of 1689 mg m−3 s−1 and fine particle flux of ∼1.0 to ∼50 mg m−3 s−1. Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are ∼2.5-50 μm per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely.  相似文献   

9.
A fine grained magnetic iron oxide precipitate found in Denmark has been studied with regard to grain size, magnetic properties, aerosol transport, grain electrification, aggregation and optical reflectance. It has shown itself to be a good Martian dust analogue. The fraction of the Salten Skov I soil sample <63 μm was separated from the natural sample by dry sieving. This fraction could be dispersed by ultrasonic treatment into grains of diameter ~1 μm, in reasonable agreement with suspended dust grains in the Martian atmosphere estimated from the Viking, Pathfinder and Mars Exploration Rover missions. Though mineralogical and chemical differences exist between this analogue and Martian dust material, in wind tunnel experiments many of the physical properties of the atmospheric dust aerosol are reproduced.  相似文献   

10.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

11.
Experiments were conducted under atmospheric pressures appropriate for Earth and Mars to determine the efficiency of sand in saltation as a means for raising dust into the atmosphere under wind speeds which would otherwise be too low for dust entrainment. Experiments involving intimate mixtures of sand and dust (1:1 ratio by mass) showed that after an initial flurry of activity of a few seconds duration, the bed stabilized with little movement of either sand or dust. In contrast, sands set into saltation upwind from dust beds were efficient in injecting the dust into suspension, with low-pressure Martian conditions being some five times more efficient than terrestrial conditions. This result is attributed to the higher kinetic energies of the saltating grains on Mars, which is a consequence of the higher velocities of the grains. These results suggest that sands saltating across dust beds on Mars are an effective means for setting dust into suspension.  相似文献   

12.
Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.  相似文献   

13.
Long-exposure spectroscopy of Mars and Venus with the Extreme Ultraviolet Explorer (EUVE) has revealed emissions of He 584 Å on both planets and He 537 Å/O+ 539 Å and He+ 304 Å on Venus. Our knowledge of the solar emission at 584 Å, eddy diffusion in Mars' upper atmosphere, electron energy distributions above Mars' ionopause, and hot oxygen densities in Mars' exosphere has been significantly improved since our analysis of the first EUVE observation of Mars [Krasnopolsky, Gladstone, 1996, Helium on Mars: EUVE and Phobos data and implications for Mars' evolution, J. Geophys. Res. 101, 15,765-15,772]. These new results and a more recent EUVE observation of Mars are the motivation for us to revisit the problem in this paper. We find that the abundance of helium in the upper atmosphere, where the main loss processes occur, is similar to that in the previous paper, though the mixing ratio in the lower and middle atmosphere is now better estimated at 10±6 ppm. Our estimate of the total loss of helium is almost unchanged at 8×1023 s−1, because a significant decrease in the loss by electron impact ionization above the ionopause is compensated by a higher loss in collisions with hot oxygen. We neglect the outgassing of helium produced by radioactive decay of U and Th because of the absence of current volcanism and a very low upper limit to the seepage of volcanic gases. The capture of solar wind α-particles is currently the only substantial source of helium on Mars, and its efficiency remains at 0.3. A similar analysis of EUV emissions from Venus results in a helium abundance in the upper atmosphere which is equal to the mean of the abundances measured previously with two optical and two mass spectrometers, and a derived helium mixing ratio in the middle and lower atmosphere of 9±6 ppm. Helium escape by ionization and sweeping out of helium ions by the solar wind above the ionopause is smaller than that calculated by Prather and McElroy [1983, Helium on Venus: implications for uranium and thorium, Science 220, 410-411] by a factor of 3. However, charge exchange of He+ ions with CO2 and N2 between the exobase and ionopause and collisions with hot oxygen ignored previously add to the total loss which appears to be at the level of 106 cm−2 s−1 predicted by Prather and McElroy [1983, Science 220, 410-411]. The loss of helium is compensated by outgassing of helium produced by radioactive decay of U and Th and by the capture of the solar wind α-particles with an efficiency of 0.1. We also compare our derived α-particle capture efficiencies for Mars and Venus with observed X-ray emissions resulting from the charge exchange of solar wind heavy ions with the extended atmospheres on both planets [Dennerl et al., 2002, Discovery of X-rays from Venus with Chandra, Astron. Astrophys. 386, 319-330; Dennerl, 2002, Discovery of X-rays from Mars with Chandra, Astron. Astrophys. 394, 1119-1128]. The emissions from both disk and halo on Mars agree with our calculated values; however, we do not see a reasonable explanation for the X-ray halo emission on Venus. The ratio of the charge exchange efficiencies derived from the disk X-ray emissions of Mars and Venus is similar to the ratio of the capture efficiencies for these planets. The surprisingly bright emission of He+ at 304 Å observed by EUVE and Venera 11 and 12 suggests that charge exchange in the flow of the solar wind α-particles around the ionopause is much stronger than in the flow of α-particles into the ionosphere.  相似文献   

14.
Bruce A. Cantor 《Icarus》2007,186(1):60-96
From 15 September 1997 through 21 January 2006, only a single planet-encircling martian dust storm was observed by MGS-MOC. The onset of the storm occurred on 26 June 2001 (Ls=184.7°), earliest recorded to date. It was initiated in the southern mid-to-low latitudes by a series of local dust storm pulses that developed along the seasonal cap edge in Malea and in Hellas basin (Ls=176.2°-184.4°). The initial expansion of the storm, though asymmetric, was very rapid in all directions (3-32 m s−1). The main direction of propagation, however, was to the east, with the storm becoming planet encircling in the southern hemisphere on Ls=192.3°. Several distinct centers of active dust lifting were associated with the storm, with the longest persisting for 86 sols (Syria-Claritas). These regional storms helped generate and sustain a dust cloud (“haze”), which reached an altitude of about 60 km and a peak opacity of τdust∼5.0. By Ls=197.0°, the cloud had encircled the entire planet between 59.0° S and 60.0° N, obscuring all but the largest volcanoes. The decay phase began around Ls∼200.4° with atmospheric dust concentrations returning to nominal seasonal low-levels at Ls∼304.0°. Exponential decay time constants ranged from 30-117 sols. The storm caused substantial regional albedo changes (darkening and brightening) as a result of the redistribution (removal and deposition) of a thin veneer of surface dust at least 0.1-11.1 μm thick. It also caused changes in meteorological phenomena (i.e., dust storms, dust devils, clouds, recession of the polar caps, and possibly surface temperatures) that persisted for just a few weeks to more than a single Mars year. The redistribution of dust by large annual regional storms might help explain the long period (∼30 years) between the largest planet-encircling dust storms events.  相似文献   

15.
Experimental results are presented of wind induced grain detachment under Mars simulation conditions. A simple force balance equation is applied to quantify the wind shear stress required for removal of glass spheres from a sand bed. The transport of fine grained martian dust is simulated by the detachment of hollow glass spheres which resemble low mass density dust aggregates observed to form during simulations when using Mars analogue material. The results agree well with observations of dust removal and wind speed measurements made by the NASA Viking landers at the martian surface. This work supports the suggestion that dust aggregate fragmentation allows wind induced dust entrainment at substantially lower wind shear than that of solid sand grains and has direct application to the study of global dust transport and martian climatology.  相似文献   

16.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

17.
With 2 years of tracking data collection from the MRO spacecraft, there is noticeable improvement in the high frequency portion of the spherical harmonic Mars gravity field. The new JPL Mars gravity fields, MRO110B and MRO110B2, show resolution near degree 90. Additional years of MGS and Mars Odyssey tracking data result in improvement for the seasonal gravity changes which compares well to global circulation models and Odyssey neutron data and Mars rotation and precession (). Once atmospheric dust is accounted for in the spacecraft solar pressure model, solutions for Mars solar tide are consistent between data sets and show slightly larger values (k2 = 0.164 ± 0.009, after correction for atmospheric tide) compared to previous results, further constraining core models. An additional 4 years of Mars range data improves the Mars ephemeris, determines 21 asteroid masses and bounds solar mass loss (dGMSun/dt < 1.6 × 10−13 GMSun year−1).  相似文献   

18.
A new optical instrument has been developed to precisely measure the local accumulation of dust particles on a surface. This device can be used in combination with applied magnetic or electric fields in order to investigate physical properties of the dust and its interactions with the surface. In this prototype instrument, permanent magnets were used to capture suspended magnetic dust in a Mars simulation wind tunnel. The scientific objectives that may be addressed with such a device are discussed.  相似文献   

19.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

20.
Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ=0.3-5 μm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ=6-35 μm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m−2 K−1 s−1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号