首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We applied an index of estuarine biotic integrity (EBI) to 36 sites in 16 estuaries on Cape Cod and in Buzzards Bay, Massachusetts, U.S. Two estuaries were sampled in 6 years, from 1988–1999 (Waquoit and Buttermilk Bays), and a total of 14 others in Buzzards Bay were sampled in 1993, 1996, and 1998. Habitats at each site were classified as either low or medium quality by density and biomass of submerged rooted vegetation (eelgrass). The EBI and its metrics (fish abundance, biomass, total species, species dominance, life history, and proportion by life zone) were successful in classifying habitat quality. Greatest success and least bias of the EBI and its metrics in classifying habitat quality occurred when eelgrass habitats were least degraded. The EBI tracked habitat degradation over time in Waquoit and Buttermilk Bays. Average EBI values in medium-quality habitats of Buzzards Bay estuaries during 1996 and 1998 were less than expected based on earlier EBI values from Waquoit and Buttermilk Bays, suggesting that many of these sites are in transition from medium to low quality. Our results indicate that the EBI is sensitive to habitat quality change, and further suggest that low-quality habitats may approach a stable fish community structure that is well reflected by the EBI. The relationship of the EBI to an independent measure of water quality demonstrated inherent time lags between the degradation and improvement of water quality, fish habitat, and response of the fish community.  相似文献   

2.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

3.
Comparison of the relative abundance of fish species from different life-history groups and their temporal patterns of estuarine habitat use from two estuaries north and south of Cape Cod indicates that the Cape acts as a zoogeographic boundary. Between April 1988 and December 1989, monthly seine and trawl samples were collected from nearshore, shallow-water marsh, and beach and deeper open-water habitats in Wells Harbor, Maine, and Waquoit Bay, Massachusetts. Forty-eight species and 80,341 individuals were collected from Waquoit Bay compared to 24 species and 22,561 individuals from Wells Harbor. Waquoit Bay had proportionally fewer resident species and more marine, nursery, and occasional species than Wells Harbor. Annual density and biomass values were greater across all habitats in Waquoit Bay, with the summer values from the marsh habitat an order of magnitude higher than comparable summer data from the Wells habitats. We suggest that marsh and beach habitats provide a nursery area for young-of-the-year fishes, while deeper, open-water habitats serve as a corridor for fishes moving to nearshore habitats or serve as a refuge during low tide.  相似文献   

4.
Change analysis of eelgrass distribution in Waquoit Bay demonstrated a rapid decline of eelgrass habitat between 1987 and 1992. Aerial photography and ground-truth assessments of eelgrass distribution in the Waquoit Bay National Estuarine Research Reserve documented progressive loss in eelgrass acreage and fragmentation of eelgrass beds that we relate to the degree of housing development and associated nitrogen loading, largelyvia groundwater, within various sub-basins of the estuary. The sub-basins with greater housing density and higher nitrogen loading rates showed more rapid rates of eelgrass decline. In eelgrass mesocosm studies at the Jackson Estuarine Laboratory, excessive nitrogen loading stimulated proliferation of algal competitors (epiphytes, macroalgae, and phytoplankton) that shade and thereby stress eelgrass. We saw domination by each of these three algal competitors in our field observations of eelgrass decline in Waquoit Bay. Our study is the first to relate housing development and nitrogen loading rates to eelgrass habitat loss. These results for the Waquoit Bay watershed provide supporting evidence for management to limit development that results in groundwater nitrogen loading and to initiate remedial action in order to reverse trends in eelgrass habitat loss.  相似文献   

5.
The relationship between lobsters and eelgrass beds was investigated in the Piscataqua River, which constitutes the lower portion of the Great Bay Estuary, New Hampshire and Maine. The goals of the study were to assess the numbers, size distribution, and sex distribution of lobsters in eelgrass beds, to determine whether lobsters in the eelgrass beds were transients or residents, and to investigate eelgrass density preferences among adolescent lobsters. Eighty percent of the lobsters collected from eelgrass beds were adolescents, measuring >40 to 70 mm carapace length (CL). Of the 295 lobsters collected at four different eelgrass beds, we found an average male-to-female ratio of 1.2. Tag/recapture efforts in eelgrass beds (1.5 to 4 mo interim period) yielded an average recapture of 5.5%. Twenty transects, each 10 m in length, sampled at two eelgrass sites revealed a lobster density of 0.1 m−2. In mesocosm experiments, lobsters (53–73 mm CL) showed a clear preference for eelgrass over bare mud. Our investigations showed that adolescent lobsters burrow in eelgrass beds, utilize eelgrass as an overwintering habitat, and prefer eelgrass to bare mud.  相似文献   

6.
We developed light requirements for eelgrass in the Pacific Northwest, USA, to evaluate the effects of short- and long-term reductions in irradiance reaching eelgrass, especially related to turbidity and overwater structures. Photosynthesis-irradiance experiments and depth distribution field studies indicated that eelgrass productivity was maximum at a photosynthetic photon flux density (PPFD) of about 350–550 μmol quanta m−2 s−1. Winter plants had approximately threefold greater net apparent primary productivity rate at the same irradiance as summer plants. Growth studies using artificial shading as well as field monitoring of light and eelgrass growth indicated that long-term survival required at least 3 mol quanta m−2 day−1 on average during spring and summer (i.e., May-September), and that growth was saturated above about 7 mol quanta m−2 day−1. We conclude that non-light-limited growth of eelgrass in the Pacific Northwest requires an average of at least 7 mol quanta m−2 day−1 during spring and summer and that long-term survival requires a minimum average of 3 mol quanta m−2 day−1.  相似文献   

7.
Land-based eutrophication is often associated with blooms of green macroalgae, resulting in negative impacts on seagrasses. The generality of this interaction has not been studied in upwelling-influenced estuaries where oceanic nutrients dominate seasonally. We conducted an observational and experimental study with Zostera marina L. and ulvoid macroalgae across an estuarine gradient in Coos Bay, Oregon. We found a gradient in mean summer macroalgal biomass from 56.1 g dw 0.25 m−2 at the marine site to 0.3 g dw 0.25 m−2 at the riverine site. Despite large macroalgal blooms at the marine site, eelgrass biomass exhibited no seasonal or interannual declines. Through experimental manipulations, we found that pulsed additions of macroalgae biomass (+4,000 mL) did not affect eelgrass in marine areas, but it had negative effects in riverine areas. In upwelling-influenced estuaries, the negative effects of macroalgal blooms are context dependent, affecting the management of seagrass habitats subject to nutrient inputs from both land and sea.  相似文献   

8.
Decline of native pelagic species in estuarine systems is an increasing problem, especially for native fishes in the San Francisco Estuary and Delta (SFE-D). Addressing these losses depends on understanding trophodynamics in the food web that supports threatened species. We quantified the role of microzooplankton (heterotrophic–mixotrophic protists <200 μm) in the food web of the upper SFE-D. We sampled protist plankton abundance and composition at two sites (Suisun Bay and Grizzly Bay) approximately monthly from February 2004 to August 2005 and conducted dilution experiments during spring and summer of both years in Suisun Bay. Heterotrophs dominated the protist community in Suisun Bay and Grizzly Bay, particularly in the <20 μm size range, and peaks in protistan microzooplankton biomass were associated with high phytoplankton biomass. In both years, microzooplankton grazing rates were high (0.5–0.7 day−1) during the spring and lower (~0.2 day−1) during summer. Phytoplankton growth rates peaked in April 2004 (~0.7 day−1) but were much lower (<0.1 day−1) in spring 2005, despite relatively high abundance. Thus, microzooplankton grazing consumed as much as 73% of phytoplankton standing stock during spring and ~15% of standing stock during summer of both years. Combined with earlier results, we conclude that microzooplankton can be important mediators of carbon and energy flow in the upper SFE-D and may be a “source” to the metazoan food web.  相似文献   

9.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

10.
The composition, abundance, biomass, and life history of mysid species were investigated and described for the first time in the Maryland Coastal Bays (38° N, 75° W), Mid-Western Atlantic, using data collected from 2010 to 2013. Three species of mysids were collected, with Neomysis americana being the most abundant species (maximum mean abundance 6.7 ± 6.4 numbers (nos.) m?2 in July 2013 and biomass 2.78 ± 2.76-mg dry weight (DW) m?2 in July 2012). Americamysis bahia was the second most abundant species (maximum mean abundance: 0.7 ± 0.4 nos. m?2 and biomass: 0.23 ± 0.14 mg DW m?2 in March 2012). Metamysidopsis swifti made up 0.02 to 2 % of mysids and were found in samples collected mainly from southern Chincoteague Bay close to that Bay’s inlet in the fall of 2012. The two most abundant mysid species reproduced continuously from March to July (Neomysis) and May to October (Americamysis). N. americana had larger body and brood sizes than A. bahia. Mysids were relatively low in abundance in late summer, a period of relatively high biomass of fish predators, than during other seasons, suggesting that intense predation might be controlling their abundance. The increase in mysid abundance in the fall following their disappearance in late summer without evidence of reproductive activities suggests species migration from coastal waters into the Maryland Coastal Bays. This annual mysid subsidy perhaps helps to sustain their populations within the bays.  相似文献   

11.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

12.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

13.
Decapod crustaceans occupying seagrass, salt marsh edge, and oyster habitats within the St. Martins Aquatic Preserve along the central Gulf coast of Florida were quantitatively sampled using a 1-m2 throw trap during July–August 1999 and March–April 2000. Relative abundance and biomass were used as the primary measures to compare patterns of occupancy among the three habitat types. Representative assemblages of abundant and common species from each habitat were compared using Schoener's Percent Similarity Index (PSI). In all, 17,985 decapods were sampled, representing 14 families and 28 species. In the summer sampling period, mean decapod density did not differ between oyster and seagrass habitats, which both held greater densities of decapods than marsh-edge. In the spring sampling period oyster reef habitat supported greater mean decapod density than both seagrass and marsh-edge, which had similar densities of decapods. Habitat-specific comparisons of decapod density between the two sampling periods indicated no clear seasonal effect. In summer 1999, when seagrasses were well established, decapod biomass among the three habitats was not significantly different. During spring 2000, decapod biomass in oyster (41.40 gm−2) was greater than in marshedge (4.20 gm−2), but did not differ from that of seagrass (9.73 g m−2). There was no significant difference in decapod biomas between seagrass and marsh-edge habitats during the spring 2000 sampling period. The assemblage analysis using Schoener's PSI indicated that decapod assemblages associated with oyster were distinct from seagrass and marshedge habitats (which were similar). The results of this study suggest that in comparison to seagrass and marsh-edge habitats, oyster reef habitats and the distinct assemblage of decapod crustaceans that they support represent an ecologically important component of this estuarine system.  相似文献   

14.
We evaluated nekton habitat quality at 5 shallow-water sites in 2 Rhode Island systems by comparing nekton densities and biomass, number of species, prey availability and feeding, and abundance of winter flounderPseudopleuronectes americanus. Nekton density and biomass were compared with a 1.75-m2 drop ring at 3 sites (marsh, intertidal, and subtidal) in Coggeshall Cove in Narragansett Bay and two subtidal sites (eelgrass and macroalgae) in Ninigret Pond, a coastal lagoon. We collected benthic core samples and examined nekton stomach contents in Coggeshall Cove. We identified 16 species of fish, 16 species of crabs, and 3 species of shrimp in our drop ring samples. A multivariate analysis of variance indicated differences in total nekton, invertebrates, fish, and winter flounder across the five sites. Relative abundance of benthic invertebrate taxa did not match relative abundance of prey taxa identified in the stomachs. Nonmetric multidimensional scaling plots showed groupings in nekton and benthic invertebrate prey assemblages among subtidal, intertidal, and marsh sites in Coggeshall Cove. Stepwise multiple regression indicated that biomass of macroalgae was the most important variable predicting abundance of nekton in Coggeshall Cove, followed by elevation and depth. In Rhode Island systems that do not experience chronic hypoxia, macroalgae adds structure to unvegetated areas and provides refuge for small nekton. All sites sampled were characterized by high abundance and diversity of nekton pointing to the importance of shallow inshore areas for production of fishes and decapods. Measurements of habitat quality should include assessment of the functional significance of a habitat (this can be done by comparing nekton numbers and biomass), some measure of habitat diversity, and a consideration of how habitat quality varies in time and space.  相似文献   

15.
Quantitative suction sampling was used to characterize and compare the species composition, abundance, biomass, and secondary production of macrofauna inhabiting intertidal mud-flat and sand-flat, eelgrass meadow, and salt-marsh-pool habitats in the Nauset Marsh complex, Cape Cod, Massachusetts (USA). Species richness and abundance were often greatest in eelgrass habitat, as was macroinvertebrate biomass and production. Most striking was the five to fifteen times greater rate of annual macrofaunal production in eelgrass habitat than elsewhere, with values ranging from approximately 23–139 g AFDW m2 yr?1. The marsh pool containing widgeon grass (Ruppia maritima) supported surprisingly low numbers of macroinvertebrates, probably due to stressfully low dissolved oxygen levels at night during the summer. Two species of macroinvertebrates, blue mussels (Mytilus edulis) and to a lesser extent bay scallops (Argopecten irradians), used eelgrass as “nursery habitat.” Calculations showed that macroinvertebrate production is proportionally much greater than the amount of primary production attributable to eelgrass in the Nauset Marsh system, and that dramatic changes at all trophic levels could be expected if large changes in seagrass abundance should occur. This work further underscores the extraordinarily large impact that seagrass can have on both the structure and function of estuarine ecosystems. *** DIRECT SUPPORT *** A01BY070 00006  相似文献   

16.
Decreases in seagrass abundance reported from numerous locations around the world suggest that seagrass are facing a global crisis. Declining water quality has been identified as the leading cause for most losses. Increased public awareness is leading to expanded efforts for conservation and restoration. Here, we report on abundance patterns and environmental issues facing eelgrass (Zostera marina), the dominant seagrass species in the Chesapeake Bay region in the mid-Atlantic coast of the USA, and describe efforts to promote its protection and restoration. Eelgrass beds in Chesapeake Bay and Chincoteague Bay, which had started to recover from earlier diebacks, have shown a downward trend in the last 5–10 years, while eelgrass beds in the Virginia coastal bays have substantially increased in abundance during this same time period. Declining water quality appears to be the primary reason for the decreased abundance, but a recent baywide dieback in 2005 was associated with higher than usual summer water temperatures along with poor water clarity. The success of eelgrass in the Virginia coastal bays has been attributed, in part, to slightly cooler water due to their proximity to the Atlantic Ocean. A number of policies and regulations have been adopted in this region since 1983 aimed at protecting and restoring both habitat and water quality. Eelgrass abundance is now one of the criteria for assessing attainment of water clarity goals in this region. Numerous transplant projects have been aimed at restoring eelgrass but most have not succeeded beyond 1 to 2 years. A notable exception is the large-scale restoration effort in the Virginia coastal bays, where seeds distributed beginning in 2001 has initiated an expanding recovery process. Our research on eelgrass abundance patterns in the Chesapeake Bay region and the processes contributing to these patterns have provided a scientific background for management strategies for the protection and restoration of eelgrass and insights into the causes of success and failure of restoration efforts that may have applications to other seagrass systems.  相似文献   

17.
Fish-habitat relationships on the shallow inner continental shelf were quantified with video sled and metered beam trawl on Fenwick and Weaver shoals offshore of Maryland and Delaware, U.S. These areas provide megascale physical relief and habitat complexity, but for juvenile fishes, mesoscale and microscale habitat is very important particularly as refuge from predation. At these smaller scales, much of the relief on the inner continental shelf is contributed by bedforms or sand waves and biogenic structures such as tubes, shell beds, or pits. A quantitative association for juvenile fishes between and within benthic habitats was found and related primarily to bedform size and amount of biogenic structure. The incidence of fishes was about four-times higher for large bedforms (> 30 cm wavelength and about 10 cm crest height) relative to smaller bedforms (<30 cm wavelength and about 5 cm crest height). For biogenic structure, going from high patch-mat tube densities to lower densities or no biogenic structure increased fish incidence by 5.4 and 3.3 times, respectively. The significant relationships of fishes with bedform size and density of biogenic structure indicated that seemingly small differences in physical structure of a habitat can make the difference between unacceptable and essential habitat for juvenile fishes. Proximity of complex and simple habitats was important in the diel use of habitat and in balancing pressure of refuge from predation provided by complex habitats with foraging for increased resources available in simpler habitats. During the day, spatially complex habitats comprised ofDiopatra andAsabellides tube mats had about twice as many fishes relative to bare sandy habitats (8.3–9.9 versus 4.0–4.1 fishes 100 m−2, respectively). At night, the pattern was reversed with more fishes present in the bare sandy habitats (12.4–13.5 versus 5.6–8.7 fishes 100 m−2). Some fish, such asAmmodytes spp., were very habitat specific and occurred only on dynamic coarser sands near the top of the shoals. Others, such asUrophycis regia, showed less habitat preference and occurred in all habitats during both day and night. Combining the effects of physical relief and biogenics, the habitat with the highest incidence of fishes had large bedforms with some biogenic structure. More emphasis needs to be placed on quantifying the relationship between fishes and their habitats for the fisheries management concept of essential fish habitat to develop into an effective tool on the inner continental shelf. The juvenile life history stages need to be emphasized because fish-habitat interactions are the strongest for these stages and may be the most ecologically important.  相似文献   

18.
We investigated the independent and interactive effects of nutrient loading and summer water temperature on phytoplankton, drift macroalgae, and eelgrass (Zostera marina) in a coastal lagoon mesocosm experiment conducted from May through August 1999. Temperature treatments consisted of controls that approximated the 9-yr mean daily temperatures for Ninigret and Point Judith Lagoons in Rhode Island (United States) and treatments approximately 4°C above and 4°C below the controls. Nutrient treatments consisted of the addition of 6 mmol N m−2d−1 and 0.5 mmol P m−2 d−1 to mesocosms 4°C above and 4°C below the 9-yr daily mean. Nutrient enrichment produced marked phytoplankton blooms in both cool and warm treatments during early summer. These were replaced after midsummer by dramatic growths of macroalgal mats ofEnteromorpha flexuosa and, to a lesser degree,Cladophora sericea. No phytoplankton blooms were observed in the cool unenriched treatments, but blooms did develop in the mean temperature and warm mesocosms during the second half of the summer that were similar in intensity, though of shorter duration, than those observed earlier in the enriched systems. Macroalgal blooms did not occur in the unenriched mesocosms. Sustained warm water temperatures markedly decreased eelgrass density and belowground production and increased the time interval between the initiation of new leaves, particuarly when the biomass of macroalgae was high. The negative effect of elevated water temperature on eelgrass was significantly increased under conditions of elevated inorganic nutrient input. By the end of summer, virtually all of the measures of eelgrass health declined in rank order from cool, to mean, to cool enriched, to warm, to warm enriched treatments. It is likely that the marked declines in eelgrass abundance observed during recent decades in the Northeast have resulted from an interaction of increasing nutrient enrichment combined with increasing summer water temperatures.  相似文献   

19.
The bivalve Pisidium amnicum (Müller 1774) is a common species in several European freshwater ecosystems. However, few Iberian watersheds are colonized by this species, and the River Minho estuary is possibly the Iberian aquatic ecosystem with the larger population. In October 2004–2007, investigations on spatial and temporal variations in P. amnicum abundance and biomass were carried out at 16 sites along the River Minho tidal freshwater wetlands. Mean abundance and biomass per site ranged from 0 to 750 ind m−2 and 0 to 7.42 g AFDW m−2, respectively. A clear decrease in the spatial distribution, abundance, and biomass was observed during the 4-year assessment. Furthermore, a stepwise multiple regression model showed that organic matter and conductivity explained 50.2% of the variation in P. amnicum abundance (R 2 = 0.502, F [2, 15] = 7.569, p = 0.005). Ecological knowledge is essential to the implementation of future conservation plans for P. amnicum, and the results of this study are of paramount importance to identify habitats that should be protected in order to preserve this species and provide scientific reference that may be useful in the development of management and/or restoration plans.  相似文献   

20.
Gulf sturgeon,Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June–July 2002 and February–April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m−2 (SE ± 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m−2, SE ± 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m−2 (SE ± 0.82) compared to 3.91 g m−2 (SE ± 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号