首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus (P) species concentrations in 0–2 cm surface sediment layer were investigated monthly from November 2001 to December 2002 at the bay, channel and open sea stations in the middle Adriatic. Modified SEDEX method was used for inorganic phosphorus species determination [P in biogenic (P-FD), authigenic (P-AUT), detrital apatite (P-DET) and P adsorbed on to iron oxides and hydroxides (P–Fe)], and organic phosphorus (P-ORG). P-FD, P-AUT and P-DET concentration ranges (1.5–5.4, 0–2.7 and 0.4–3.4 μmol g−1, respectively) were similar at all stations, and showed no obvious common trend of seasonal changes. P–Fe ranged from 1.9 to 11.9 μmol g−1 with the highest values at bay station and higher seasonal oscillations than other inorganic P forms. P-ORG ranged from 0.3 to 18.7 μmol g−1 with higher concentrations at stations of fine-sized sediments and showed increased concentrations in warm part of the year at all stations. Correlation between concentrations of P–Fe in the surface sediment layer and orthophosphate sediment-water interface concentration gradients at bay and channel stations indicated to P–Fe importance in the orthophosphate benthic flux. For the bay station, linkage between sediment P-ORG and chlorophyll a concentrations, primary production and microzooplankton abundance was established, indicating a 1 month delay of sediment response to production fluctuations in the water column.  相似文献   

2.
The primary factors that control the concentration of total reduced (inorganic) sulfide in coastal sediments are believed to be the availability of reactive iron, dissolved sulfate and metabolizable organic carbon. We selected nine sites in shallow (<3 m), close to sub-tropical, estuaries and bays along the central Texas coast that represented a range in sediment grain size (a proxy for reactive iron), salinity (a proxy for dissolved sulfate), and total organic carbon (a proxy for metabolizable organic carbon). Based on these parameters a prediction was made of which factor was likely to control total reduced sulfide at each site and what the relative total reduced sulfide concentration was likely to be. To test the prediction, the sediments were analyzed for total reduced sulfide, acid volatile sulfide, and citrate dithionate-extractable, HCl-extractable and total Fe in the solid phase. Using solid-state gold–mercury amalgam microelectrodes and voltammetry, we determined pore water depth profiles of Fe(II) and ΣH2S and presence or absence of FeS(aq). At five of the nine sites the calculated degree of sufildization of citrate dithionite-reactive-iron was close to or greater than 1 indicating that rapidly reactive iron was probably the limiting factor for iron sulfide mineral formation. At one site (salinity = 0.9) dissolved Fe(II) was high, ΣH2S was undetectable and the total reduced sulfide concentration was low indicating sulfate limitation. At the last three sites a low degree of sulfidization and modest total reduced (inorganic) sulfide concentrations appeared to be the result of a limited supply of metabolizable organic carbon. Fe(II)–S(-II) clusters (FeS(aq)) were undetectable in 10 out of 12 bay sediment profiles where ΣH2S was close to or below detection limits, but was observed in all other porewater profiles. Acid volatile sulfide, but not total reduced sulfide, was well correlated with total organic carbon and ranged from being undetectable in some cores to representing a major portion of total reduced sulfide in other cores. Although predicted controls on total reduced sulfide were good for very low salinity water or sandy sediments, they were only right about half the time for the other sediments. The likely reasons for the wrong predictions are the poor correlation of total organic carbon with grain size and differing fractions of metabolizable organic carbon in different sedimentary environments. Differences in sediment accumulation rates may also play a role, but these are difficult to determine in this region where hurricanes often resuspend and move sediments. This study demonstrates the need to examine more complex and often difficult to determine parameters in anoxic “normal marine” sediments if we are to understand what controls the concentration and distribution of sulfides.  相似文献   

3.
Oyster and sediment samples collected from six sites in Galveston Bay from 1986 to 1998 were analyzed for polynuclear aromatic hydrocarbons (PAHs). Total concentrations of parent PAHs in oysters ranged from 20 ng g−1 at one site to 9,242 ng g−1 at another and varied randomly with no clear trend over the 13 year period at any site. Concentrations of alkylated PAHs, which are indications of petroleum contamination, varied from 20 to 80,000 ng g−1 in oysters and were in higher abundance than the parent PAHs, indicating that one source of the PAH contaminants in Galveston Bay was petroleum and petroleum products. Four to six ring parent PAHs, which are indicative of combustion source , were higher than those of 2–3 ring parent PAHs, suggesting incomplete combustion generated PAHs was another source of PAHs into Galveston Bay. Concentrations of parent PAHs in sediments ranged from 57 to 670 ng g−1 and were much lower than those in oysters. Sediments from one site had a high PAH concentration of 5,800 ng g−1. Comparison of the compositions and concentrations of PAHs between sediment and oysters suggests that oysters preferentially bioaccumulate four to six ring PAHs. PAH composition in sediments suggests that the sources of PAH pollution in Galveston Bay were predominantly pyrogenic, while petroleum related PAHs were secondary contributions into the Bay.  相似文献   

4.
Voltammetric methods using direct insertion of a gold-amalgam microelectrode with a sensitive, computercontrolled voltammeter detected soluble iron(II) sulfide, [FeS]aq, in the porewaters of anoxic, sulfidic, fine-grained sediments from the Loughor Estuary, Wales. The voltammetric results are reproducible. Studies of cores stored in sealed, refrigerated containers for up to 21 d reveal no measurable oxidation. [FeS]aq forms in this estuarine environment as a result of the dissolution of amorphous FeS, and appears to be involved in the formation of pyrite. [FeS]aq makes no significant contribution to the total sulfide and iron contents of the sediment but could constitute an important component of the dissolved Fe(II) and S(−II) contents of the porewater. Mass balance calculations show pyrite forms in this system by the addition of sulfur to FeS rather than by the loss of iron from FeS. The overall process appears to involve [FeS]aq as an intermediary. Although the porewaters of the Loughor Estuary sediments are iron-rich relative to seawater, the iron sulfide-forming process is iron-limited rather than sulfide-limited. Reactive iron is bound to sulfide rapidly in the sediment. After the reactive iron is bound to sulfide, additional sulfide produced is fixed as pyrite.  相似文献   

5.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

6.
Sediment cores were sampled from Xiamen Western Bay at five sites during the summer and winter of 2006 and Hg–Au microelectrodes were used to make on board measurements of the concentration gradients of dissolved oxygen, Mn2+, and Fe2+ within the sediments. The O2 concentrations decreased sharply from about 200 μmol L−1 in the bottom seawater to zero within a depth of a few millimeters into the sediment. Dissolved Mn2+ was detected below the oxic zones with peak concentrations up to 600 μmol L−1, whereas dissolved Fe2+ had peak concentrations up to 1,000 μmol L−1 in deeper layers. The elemental contents of organic carbon and nitrogen within the sediments were analyzed and their C/N ratios were in the range of 9.0 to 10.1, indicative of heavy terrestrial origin. Sediments from two sites near municipal wastewater discharge outlets had higher organic contents than those from the other sites. These high organic contents corresponded to shallow O2 penetration depths, high dissolved Mn2+ and Fe2+ concentrations, and negative redox potentials within the sediments. This indicated that the high organic matter content had promoted microbial respiration within the sediments. Overall, the organic content did not show any appreciable decrease with increasing sediment depths, so a quadratic polynomial function was used to fit the curve of O2 profiles within the sediments. Based on the O2 profiles, O2 fluxes across the seawater and sediment interface were estimated to be in the range 6.07 to 14.9 mmol m−2 day−1, and organic carbon consumption rates within the surface sediments were estimated to be in the range 3.3 to 20.8 mgC cm−3 a−1. The case demonstrated that biogeochemistry within the sediments of the bay was very sensitive to human activities such as sewage discharge.  相似文献   

7.
This study represents the first report on sediment accretion rates using137Cs dating for a southern California salt marsh. Vertical accretion rates ranged from 0.7 to 1.2 cm yr−1, which is at the high end of sediment accretion values for coastal wetlands. This has lead to increases in elevation within the estuary from 18 to 35 cm over the last 35 years. Depth profiles of metal concentrations were converted to time-based profiles using vertical accretion rates. Chronologies for most cores indicate a consistent peak in sediment lead (Pb) concentrations in the early to mid 1980s, corresponding to the historic decline in Pb use, which was completed in the U.S. by the early 1980s, but not begun in Mexico until 1991. Sediment Pb levels ranged from about 6–56 μg g−1. Other metals did not show any consistent trends in sediment chronology, except for a single core from a mid-marsh site (east-mid 2), which showed a 2–3-fold increase in levels of Cu, Ni, and Zn during the past two decades. Sediment levels of copper (Cu), nickel (Ni), and zinc (Zn) ranged from 6–34 μg g−1, 11–27 μg g−1, and 42–122 μg g−1, respectively. Despite rapid industrial development of the watershed, a comparison of the sediment metal concentrations in the Tijuana Estuary to other anthropogenically-impacted estuaries in the United States and Europe, shows that metal levels in sediments of the north arm of the estuary are relatively low.  相似文献   

8.
210Pb geochronologies of Cd, Cu, Hg, and Pb fluxes were obtained from the intertidal mudflat sediments of the coastal lagoons Chiricahueto, Estero de Urías, and Ohuira in the Mexican Pacific. The Cu and Hg sediment concentrations at the three lagoons fell within the ranges of 6–76 μg g−1 and 0.1 to 592 ng g−1, respectively; Chiricahueto and Estero de Urías sediments had comparable Cd and Pb concentrations within the ranges of 0.2–2.1 μg g−1 and 10–67 μg g−1, respectively; whereas in Ohuira lagoon, Cd concentrations were lower (0.1–0.5 μg g−1) and Pb concentrations were higher (115–180 μg g−1) than in the other lagoons. The metal fluxes (μg cm−2 y−1) for the three lagoons fell within the ranges of 0.02–0.15 for Cd, 0.7–6.0 for Cu, 0.001–0.045 for Hg, and 0.7–20 for Pb. The Hg pollution in Estero de Urías was attributed to the exhausts of the thermoelectric plant of Mazatlan and the metal enrichment in Chiricahueto and Ohuira was related to the agrochemical wastes from the croplands surrounding these lagoons.  相似文献   

9.
Phosphatase activity was measured in sediments from tidal freshwater habitats adjacent to the Cooper River in South Carolina representing different stages of ecological succession. It was found that sediment (0–5 cm) acid phosphatase activity, alkaline phosphatase activity and phosphodiesterase activity increased with increasing successional stage and phytomass. Acid phosphatase activity in creased from 7.5±1.2 (±1 SD) in subtidal sediment from a shallow open water habitat without vegetation to 61.2±4.9 μmol g−1 hr−1 (μmol of p-nitrophenol released per gram of dry sediment per hour) in intertidal sediments colonized by emergent macrophytes, while alkaline phosphatase activity increased from 2.1±0.1 to 19.01±1.5 μmol g−1 hr−1. Phosphodiesterase activity increased from 1.8±0.1 to 20.2±2.0 μmol g−1 hr−1 along the same gradient. Acid phosphatase activity was highly correlated (R2=0.92, P<0.001) with the organic matter content of the sediment. A study of phosphatase kinetics showed that Vmax of all phosphatases also increased along the successional gradient. Trends in phosphatase activity and Vmax correlated positively with plant biomass and negatively with concentrations of soluble reactive phosphorus in porewater, sediment extractable phosphorus, and total phosphourus. The porewater N∶P atom ratio decreased along the succession gradient from 25.3 in an early stage, open water community to 13.0 in a community dominated by emergent vegetation. The data also show that the distribution of the forms of phosphorus changed with successional stage. The change in distribution and the increased biological demand for phosphorus that paralleled succession were mediated by the activity of phosphatase enzymes.  相似文献   

10.
Three undisturbed sediment samples were collected from the intertidal zone of the Jiaojiang Estuary of Zhejiang Province, China. The sediments were found to contain remarkably low concentrations of organic carbon (<0.6%) and acid volatile sulfide (AVS) (<30 μmol g−1). The availability of these two substrates likely constrained sulfate reduction and pyritization of several trace metals, respectively. This was especially true at one station where AVS concentrations in the upper 20 cm averaged less than 0.05 μmol g−1. Although the depth dependence of the degree of trace metal pyritization was generally consistent with expectations based on redox conditions, depth profiles of reactive-metal and pyrite-metal concentrations in several cases revealed more complex behavior and a positive correlation between reactive-metal concentrations and pore water metal concentrations.  相似文献   

11.
The biogeochemistry of organic matter (OM) in a macrotidal estuary, the Yalujiang River, was studied during two cruises: the flood season in August 1994 and the dry season in April 1996. Surface sediments were collected in the riverine zone (RZ), the turbidity maximum zone (TMZ), and the marine zone (MZ). The molecular distribution of the n-alkanes and fatty acid series and bulk sediment characteristics, such as C:N and δ13C, were used to assess differences in OM source and transport from the river upstream to the marine end member. Higher C:N values typical for terrestrial sources were observed at the upper reach for both seasons. The δ13C of OM in surface sediments varied from −27.3‰ to −21.6‰ in the flood season and from −26.8‰ to −31‰ in the dry season. The concentrations of n-alkanes varied between 0.3–21.4 μg g−1 and the variation of fatty acids was 4.8–32.9 μg g−1. The data showed mixing of terrestrial and autochthonous OM in the middle and lower reaches. The distribution of lipids (n-alkanes and Carbon Preference Index) encountered in this study confirmed the importance of terrestrial OM in the sediment samples from degraded soil material. The distribution of fatty acids suggested important phytoplankton, zooplankton, and microbial signals (short-chain and unsaturated acids; ≤C20). Branched fatty acids, such as the iso- and anteiso-C15 and C17 compounds, relfect bacterial contributions. All samples were characterized by a high proportion of mixture inputs in both seasons. A slight decreasing trend was observed with increasing salinity except for the highest percentage of mixed fatty acids in the TMZ of the flood season. Terrestrial fatty acids were approximately 20% in the flood season and 27–46% in the dry season. Differences in hydrological conditions and primary production between the TMZ, RZ, and MZ resulted in different OM distributions, which are reflected in the sources and degree of diagenesis of the sedimentary OM. Seasonal variation may be strongly influenced by hydrological characteristics rather than primary productivity and anthropogenic activities in the Yalujiang region.  相似文献   

12.
Sulfate reduction rate (SRR) and pools of reduced inorganic sulfur, acid volatile sulfide (AVS), chromium reducible sulfur (CRS), and elemental sulfur (So), were studied from June 1990 till March 1992 at two locations on the Ballastplaat mudflat in the Scheldt estuary. The sediment composition at station A was mainly sand with low organic content whereas sediments at station B were dominated by silt and clay with high organic content. SRR was positively related to temperature; more pronounced at station B (Ea=190 kJ mol−1) than at station A (Ea=110 kJ mol−1). The maximum SRR values observed equalled 14 μmol cm−3 d−1 at station B and 1 μmol cm−3 d−1 at station A. AVS was the dominant radiolabelled end product of the sulfate reduction reaction, except in surface sediments where pyrite and So were more dominant. However, CRS was the predominant reduced inorganic sulfur pool in the sediments. Both AVS and CRS pools showed temporal variations out of phase with SRR. SRR peaked in summer, while the concentrations of AVS and CRS were highest in fall. The accumulation of AVS and CRS started late summer after depletion of oxidants, which had accumulated during winter and spring. The estimated annual SRR and thus sulfide production in the upper 15 cm of station B was of the order of 100 mol m−2 yr−1, and at station A of the order of 12 mol m−2 yr−1. The sulfur mass balance shows that only a very small fraction, if any, of the produced sulfide is retained as reduced inorganic sulfur in the sediment.  相似文献   

13.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

14.
Allochthonous inputs of suspended particulate matter from freshwater environments to estuaries influence nutrient cycling and ecosystem metabolism. Contributions of different biogeochemical reactions to phosphorus dynamics in Tomales Bay, California, were determined by measuring dissolved inorganic phosphorus exchange between water and suspended particulate matter in response to changes in salinity, pH, and sediment redox. In serum bottle incubations of suspended particulate matter collected from the major tributary to the bay, dissolved inorganic phosphorus release increased with salinity during the initial 8 h; between 1–3 d, however, rates of release were similar among treatments of 0 psu, 16 psu, 24 psu, and 32 psu. Release was variable over the pH range 4–8.5, but dissolved inorganic phosphorus releases from sediments incubated for 24 h at the pH of fresh water (7.3) and seawater (8.1) were similarly small. Under oxidizing conditions, dissolved inorganic phosphorus release was small or dissolved inorganic phosphorus was taken up by particulate matter with total P content <50 μmoles P g?1; release was greater from suspended particulate matter with total phosphorus content >50 μmoles P g?1. In contrast, under reducing conditions maintained by addition of free sulfide (HS?), dissolved inorganic phosphorus was released from particles at all concentrations of total phosphorus in suspended particulate matter, presumably from the reduction of iron oxides. Since extrapolated dissolved inorganic phosphorus release from this abiotic source can account for only 12.5% of the total dissolved inorganic phosphorus flux from Tomales Bay sediments, we conclude most release from particles is due to organic matter oxidation that occurs after estuarine deposition. The abiotic, sedimentary flux of dissolved inorganic phosphorus, however, could contribute up to 30% of the observed net export of dissolved inorganic phosphorus from the entire estuary.  相似文献   

15.
Environmental geochemistry of high arsenic groundwater at Hetao plain was studied on the basis of geochemical survey of the groundwater and a core sediment. Arsenic concentration in groundwater samples varies from 76 to 1093 μg/L. The high arsenic groundwater mostly appears to be weakly alkaline. The concentrations of NO3 and SO42− are relatively low, while the concentrations of DOC, NH4+, dissolved Fe and sulfide are relatively great. Analysis of arsenic speciation in 21 samples shows that arsenic is present in the solution predominantly as As(III), while particulate arsenic constitutes about 10% of the total arsenic. Methane is detected in five samples with the greatest content being 5107 μg/L. The shallow aquifer in Hangjinhouqi of western Hetao plain is of strongly reducing condition. The arsenic content in 23 core sediment samples varies from 7.7 to 34.6 mg/kg, with great value in clay and mild clay layer. The obvious positive relationship in content between Fe2O3, Mn, Sb, B, V and As indicates that the distribution of arsenic in the sediments may be related to Fe and Mn oxides, and the mobilization of Sb, B and V may be affected by similar geochemical processes as that of As.  相似文献   

16.
Determining sources of sediment to coastal systems is an important and complex problem that figures prominently in a myriad of geological, geomorphological, geochemical, and biological processes. Lithogenic (226Ra,228Ra,228Th,230Th,232Th) and fallout (137Cs,210Pb) isotopes were employed in conjunction with sedimentological methods to determine rates of sedimentation in the Nueces Delta and Nueces-Corpus Christi Estuary and to assess the relative importance of marine versus terrestrial sediment sources to the estuary. Similarity of lithogenic isotope ratios in surface sediments throughout the system precluded a numeric approach to discerning the importance of each of the two large scale sediment sources (terrestrial and marine). A stepwise, graphical examination of discrete lithogenic isotope activity concentrations shows more promise. Terrestrial, marine, and bay sediment means for226Ra versus232Th,226Ra versus230Th, and228Ra versus232Th show that terrestrial and marine sediment sources have different signatures, despite having similar grain size distributions (sands), and that sediment deposited in Nueces and Corpus Christi Bays are indistinguishable from the terrestrial component. Supporting evidence is provided by thorium isotopes,230Th versus232Th,228Th versus232Th, and228Th versus230Th. Nueces Delta sedimentation (0.09–0.53 g cm−2 yr−1) shows a subtle gradient, with rates generally lower in the west and progressively higher moving east, likely reflecting contrasts in land use and topography. Nueces Bay cores differ from those in Corpus Christi Bay in that sands comprise a larger percentage of their composition, and they are mixed over greater depth, most likely due to geographic and physiographic effects. Sediment accumulation rates consistently decrease over the first 20 km from the Nueces River and become constant after that, implying that the river is the most significant source of sediment to the estuary. The interpretation of sediment supply to this estuary as dominated by terrestrial inputs is based on three complimentary sets of data: sediment grain size distributions, discrete lithogenic isotope data (Ra versus Th and Th versus Th), and sediment accumulation rates for both Nueces and Corpus Christi Bays.  相似文献   

17.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   

18.
Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive “background” concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO42− cm−3 d−1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, “potential sulfate reduction” which showed that a physiologically intact community of sulfate reducing bacteria was present. The “background” sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO2 which is reduced with H2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.  相似文献   

19.
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).  相似文献   

20.
Many small estuaries are influenced by flow restrictions resulting from transportation rights-of-way and other causes. The biogeochemical functioning and history of such systems can be evaluated through study of their sediments. Ten long and six short cores were collected from the length of Jordan Cove, Connecticut, a Long Island Sound subestuary, and analyzed for stratigraphy, radionuclides (14C, 210Pb, 226Ra, 137Cs, and 60Co), and metals (Ag, Cd, Cu, Pb, Zn, Fe, and Al). For at least 3,800 yr, rising sea level has gradually inundated Jordan Cove, filling it with mud similar to that currently being deposited there. Long-term sediment accumulation in the cove averaged close to 0.1 cm yr−1 over the last three millennia. Recent sediment accumulation rates decrease inland from 0.84 cm yr−1 to 0.40 cm yr−1, and are slightly faster than relative sea-level rise at this site (0.3 cm yr−1). Similarity of depth distributions of trace metals was used to confirm relative sediment accumulation rates. 60Co and Ag are derived from sources outside the cove and its watershed, presumably the Millstone nuclear power plant and regional contaminated sediments, respectively. The combined data suggest that Long Island Sound is an important source of sediment to the cove; a minor part of total sediment is supplied from the local watershed. Trace metal levels are strongly correlated with Fe but not with either organic matter or Al. Sediment quality has declined in the cove over the past 60 yr, but only slightly. Cu, Pb, and Zn data correlate strongly with Fe but not with either organic matter or aluminum. Ratios of Ag to Fe and to trace metals suggest that Ag in the cove is derived almost entirely from Long Island Sound. This result supports the notion that Fenormalized Ag can serve as a better tracer of some kinds of contamination than more common and abundant metals, like Cu, Pb, and Zn. *** DIRECT SUPPORT *** A01BY085 00008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号