共查询到18条相似文献,搜索用时 78 毫秒
1.
青藏高原多年冻土区地温监测结果分析 总被引:18,自引:13,他引:18
根据4个波土长期定位观测场地温资料分析,西大滩观测场深12 ̄20m段地温升高0.2 ̄0.3℃,多年冻土层由下向上减薄4 ̄5m;昆仑山垭口观测场深6 ̄15m段地温升高0.2 ̄0.4℃;66道班观测场内天然场地地温高于人工沙场0.1 ̄0.5℃;可可里里观测场内天然植被场地地温普遍高于裸露场地约0.2℃。监测结果表明,影响高原多年冻土发育的因素多具有两重性,地表沙层和植被同样具有升高地温和降低地温的作用 相似文献
2.
青藏高原多年冻土区地温年变化深度的变化规律及影响因素 总被引:1,自引:0,他引:1
地温年变化深度的准确判断对于多年冻土发育特征评估、寒区冻土模式下边界深度的确定具有重要意义.通过对青藏高原地区典型钻孔地温数据进行分析,初步揭示了多年冻土地温年变化深度的变化规律及其影响因素,并提出一种简化了地表和活动层状态影响的地温年变化深度估算方法.结果表明:研究区低温冻土的地温年变化深度平均值比高温冻土大4.6 m,随着冻土温度升高,地温年变化深度基本上呈减小趋势,部分低温冻土钻孔由于土层含水率过高导致地温年变化深度相对较小;由于活动层水热动态和冻融过程的影响,地温年变化深度与浅层(0.5 m)温度年较差相关性不显著,而与多年冻土上限附近温度年较差的大小呈显著正相关关系;地层介质的热扩散率差异是导致地温年变化深度区域差异和变化的主要原因,土层含水率、温度、质地以及水的相态是影响地层热物理性质重要因素. 相似文献
3.
4.
青藏高原天然气水合物的形成与多年冻土的关系 总被引:12,自引:2,他引:12
天然气水舍物是一种新型清洁能源,赋存在多年冻土区和海洋沉积物等低温高压环境中。青藏高原多年冻土面积占高原总面积的一半以上.是可能的天然气水舍物赋存区。根据青藏高原多年冻土条件和天然气水舍物形成的热力学条件,讨论了多年冻土地温梯度、冻土厚度与天然气水舍物形成的热力学条件之间的关系和青藏高原存在天然气水合物的可能性。结果表明,青藏高原多年冻土区基本具备形成天然气水合物的热力学条件,最适宜的热力学条件是多年冻土地温梯度接近或略大于多年冻土底板附近融土的地温梯度,且融土地温梯度越小,越容易形成天然气水舍物。估算得到天然气水舍物最浅的顶界埋深为74m左右,最深的底界埋深达上千米。 相似文献
5.
6.
7.
青藏高原多年冻土概论 总被引:3,自引:0,他引:3
本文较系统地阐述了青藏高原多年冻土的地带性规律,冻土构造以及融区的类型和分布特征,详细论述了不同作用下形成的冻土(冰缘)地貌,并对青藏高原的冰缘期进行了初步划分与对比。 相似文献
8.
青藏高原天然气水合物的形成与多年冻土的关系 总被引:1,自引:0,他引:1
天然气水合物是一种新型清洁能源,赋存在多年冻土区和海洋沉积物等低温高压环境中.青藏高原多年冻土面积占高原总面积的一半以上,是可能的天然气水合物赋存区.根据青藏高原多年冻土条件和天然气水合物形成的热力学条件,讨论了多年冻土地温梯度、冻土厚度与天然气水合物形成的热力学条件之间的关系和青藏高原存在天然气水合物的可能性.结果表明,青藏高原多年冻土区基本具备形成天然气水合物的热力学条件,最适宜的热力学条件是多年冻土地温梯度接近或略大于多年冻土底板附近融土的地温梯度,且融土地温梯度越小,越容易形成天然气水合物.估算得到天然气水合物最浅的顶界埋深为74 m左右,最深的底界埋深达上千米. 相似文献
9.
天然气水合物是一种新型清洁能源,赋存在多年冻土区和海洋沉积物等低温高压环境中。青藏高原多年冻土面积占高原总面积的一半以上,是可能的天然气水合物赋存区。根据青藏高原多年冻土条件和天然气水合物形成的热力学条件,讨论了多年冻土地温梯度、冻土厚度与天然气水合物形成的热力学条件之间的关系和青藏高原存在天然气水合物的可能性。结果表明,青藏高原多年冻土区基本具备形成天然气水合物的热力学条件,最适宜的热力学条件是多年冻土地温梯度接近或略大于多年冻土底板附近融土的地温梯度,且融土地温梯度越小,越容易形成天然气水合物。估算得到天然气水合物最浅的顶界埋深为74m左右,最深的底界埋深达上千米。 相似文献
10.
青藏高原多年冻土区天然气水合物形成潜力及远景 总被引:15,自引:0,他引:15
在详细论述天然气水合物研究历史和研究现状的基础上,重点讨论了东土区天然气水合物赋存状态,气体来源、地质环境,总结出冻土区天然气水合物形成模式。根据青藏高原现有资料分析,认为藏北高原羌塘盆地地质条件最好,是寻找多年冻土区天然气水合物矿藏的有利地区,预测该区天然气水合物矿藏可能有两种类型:一是煤成气型,二是油气型,煤成气型天然气水合物以二叠系乌丽群和上三叠统巴贡组聚煤中心为远景目标区,油气型天然气水合物以双潮-比洛错和玛尔果茶卡地区为最佳远景目标,并指出目前进行青藏高原天然气水合物研究宜首先开展工作的地区和研究方法。 相似文献
11.
青藏高原多年冻土层中地下冰储量估算及评价 总被引:5,自引:7,他引:5
过去几十年来,沿青藏公路/铁路多年冻土区已经完成了数千个钻孔的钻探工作.经过仔细筛选,对其中的697个钻孔剖面的地下冰分布状况和其中9261个重量含水量的分布特征进行了分析.在水平方向上,依据地下冰的分布特征,把青藏公路/铁路沿线的多年冻土划分成少冰冻土、多冰冻土、富冰冻土、饱冰冻土和含土冰层5个含冰量类别,并详细统计了各类冻土沿公路所占里程.在垂向上,将每个钻孔划分出3个深度段:即多年冻土上限以下1m范围内、上限下深1~10m段及上限下10m以下段,统计了各深度地下冰储量.青藏公路沿线多年冻土的平均厚度为38.79m,平均含水量为17.19%,据此初步估算出青藏高原多年冻土区地下冰的总储量为9528km3. 相似文献
12.
13.
青藏高原多年冻土区典型高寒草地生物量对气候变化的响应 总被引:12,自引:3,他引:12
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm·(10a)-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm·(10a)-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义. 相似文献
14.
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃.(10a)^-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm.(10a)^-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃.(10a)^-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm.(10a)^-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义. 相似文献
15.
基于CoupModel的青藏高原多年冻土区土壤水热过程模拟 总被引:1,自引:5,他引:1
近年来, 青藏高原多年冻土区生态环境呈现出逐年恶化趋势, 从而对多年冻土活动层水热过程造成显著影响. 此外, 如何构建更加有效、 针对寒区的陆面过程模式成为寒区研究的重点、 热点之一. 作为一种有效的参数估计方法, Bayes参数估计算法具有准确估计陆面过程模式参数的能力. 因此, 基于2005-2008年观测数据, 利用CoupModel模型对青藏高原风火山流域土壤水热运移过程进行模拟; 同时, 利用Bayes参数估计方法估计部分水热运移参数. 结果显示: 模型对土壤温度(ST)的模拟效果较好, NSE系数均在0.90以上; 也能够较好模拟浅层(0~40 cm)土壤水分, NSE值均达到0.80以上, 而对40 cm以下土壤水分的模拟结果较差. 模型也能够较准确模拟活动层土壤的冻结-融化过程. 模型对温度水分极值和40 cm深度以下水分的模拟存在一些偏差. 值得一提的是, 基于重要性采样MCMC方案的Bayes参数估计算法能够有效估计水热运移参数, 模型模拟结果得到极大的改进. Bayes算法能够广泛解决陆面过程模式参数估计问题. 相似文献
16.
17.
青藏高原多年冻土区斜坡类型及典型斜坡稳定性研究 总被引:23,自引:2,他引:23
冻土区斜坡稳定性是青藏高原工程建设必须面对和解决的问题之一. 介绍了青藏高原多年冻土区斜坡失稳的主要类型, 包括崩塌型、蠕变型、泥流阶地型、表土植被层蠕滑型及热融滑塌型等. 其中热融滑塌型对于高原环境、尤其是植被及工程的危害最为显著, 该类斜坡的诱发因素一般为工程开挖或工程活动对冻土的热扰动, 斜坡失稳的根本原因在于多年冻土融化后强度的减弱或丧失. 在分析了热融滑塌型滑坡失稳机理的基础上, 提出了滑坡治理的原则与工程措施方案建议. 相似文献
18.
青藏高原东部的冻土退化 总被引:18,自引:15,他引:18
本从冻土与现代气候关系出发,理论上确定了冻土分区的界限。用剖面图展示出本区不同类型冻土分布代表性高程,并以丰富的资料分析了出露在不同冻土区内的埋藏冻土层,冻土地貌假像,岛状冻土上限的起伏以及融冻地貌,植被变化等诸多现象呈现退化的一致性,得出了“退化是本区多年冻土变化的基本趋势”这一结论。 相似文献