首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
正黄陵穹窿位于华南扬子克拉通核部地区,出露有华南前南华纪最古老、面积最大的太古宙-古元古代崆岭杂岩(崆岭岩群)(高山和张本仁,1990;马大铨等,1997;Gao et al.,1999,2011;Qiu et al.,2000;Zhang et al.,2006;Zheng et al.,2006;Jiao et al.,2009;Guo et al.,2014),受后期新元古代黄陵花岗杂岩体侵入影响,大体以雾渡河大断裂为界分隔为南、北部两部分(也称为南、北崆岭群),是扬子克拉通前南华纪基底最具代表性的岩石记录,一直受国内外地质学界的高度关注,但对其大地  相似文献   

2.
<正>目前,对于斑岩铜矿的研究主要集中于探讨温度区间为200800℃范围内矿床的成因问题,例如岩体形成时代及顺序、矿化和热液蚀变时代以及热液活动时限等(Barra et al.,2002;Masterman et al.,2004;Deckart et al.,2005;Pollard et al.,2005;Campbell et al.,2006;Mao et al.,2006;Baumgartner et al.,2009;Redmond and Einaudi,2010;Sillitoe and Mortensen,2010;Vry et al.,2010;Shen et al.,2012;Zhu et al.,2012)。虽然这些问题很重要,但是仍然不足以全面的认识和  相似文献   

3.
<正>在中国,钒钛磁铁矿主要产在约260 Ma的峨眉山大火成岩省内(Zhou et al.,2005),竹箐岩体群虽然位于扬子地台西缘的ELIP的内带范围内,但与晚古生代形成ELIP的岩浆活动无关。有人提出扬子地台很可能参与了Columbia超大陆的聚合过程(Zhang et al.,2006;Sun et al.,2008;Wu et al.,2008;Zhao et al.,2010),然而,关于扬子地块与Columbia超大陆之间关系的研  相似文献   

4.
<正>铜峪铜矿床是迄今在北秦岭西部认定的少数具有工业价值的VHMS型铜矿床,但该矿床研究程度较低(戴文晗,1982;宁晰春,1984;Lee et al.,2010;朱赖民等,2010)。铜峪铜矿床位于秦岭造山带北秦岭构造带中段斜峪关群中,在大地构造位置上处于商丹缝合带北侧,秦岭与祁连造山带的交汇部位。矿区地层总体走向北西西,东西两端分别被太白花岗岩体、宝鸡花岗岩体所截,中部煤沟花岗闪长岩体侵入于矿区背斜南翼,岩  相似文献   

5.
<正>近年来,铜同位素的研究及其地质应用取得了重要进展(Maréchal et al.,1999;Zhu et al.,2000;Mathur et al.,2005;Markl et al.,2006;Pokrovsky et al.,2008;Maher et al.,2011;Dekov et al.,2013;Mathur and Fantle,2015),  相似文献   

6.
前人对新元古代镁铁质岩墙的研究对于重建Rodinia超大陆的裂解在澳大利亚和华南中的表现起到至关重要的作用(Wingate et al.,1998,2000;Li Z X et al.,1999;Li X H et al.,2006b).  相似文献   

7.
<正>1 Introduction Many high yield shale gas areas in the World are discovered carbon isotope reversals:Barnett,Fayetteville(Zumberge et al.,2012),Marcellus(Tilley et al.,2013),Haynesville(Ferworn et al.,2008),Albany shale gas(Gao et al.,2014),Utica shale gas(Xia et al.,1999;Xia et al.,2012;Xia et al.,2013),the Foothills(Tilley et al.,2011),  相似文献   

8.
杨宝菊  曾志刚  刘季花 《地质学报》2015,89(Z1):219-221
<正>无定形Fe和Mn氧化物以及硅的沉积体广泛分布于洋中脊、弧后盆地和海山等不同地质背景的海底热液区(Binns et al.,1993;Hein et al.,2008;Dekov et al.,2010)。Fe-Mn氧化物按照成因不同主要分为三种类型(Hein et al.,2008):(1)从海水中通过加积作用沉淀在坚硬基岩上的水成成因Fe-Mn氧化物;  相似文献   

9.
<正>冈底斯岩基是拉萨地体的重要组成部分,广泛发育早古生代至新生代岩浆岩(Chung et al.,2003;Hou et al.,2004;Mo et al.,2007;Wen et al.,2008;Zhu et al.,2011,2012)。在冈底斯岩基漫长而复杂的演化过程中伴随着大量的岩浆活动,其中200~150Ma、140~80 Ma、65~41Ma以及35-14Ma被认为是  相似文献   

10.
<正>无定形Fe-和Mn-羟基氧化物以及硅的沉积体广泛分布于洋中脊(Dekov et al.,2010)、弧后盆地(Hein et al.,2008;Zeng et al.,2012)和海山(Emerson et al.,2002;Edwards et al.,2011)等不同地质背景的海底热液区。热液Fe-羟基氧化物按成因可以分为三类:热液硫化物的氧化产物,直接从热液中沉淀形成的氧化物以及来自热液  相似文献   

11.
通过对分离结晶作用和批式熔融作用Cly/Clx-Cly图解的数学分析,笔者认为,虽然ClLa/Clsm-ClLa图解在一定程度上能区分这两种不同岩浆作用过程,但是,Treuil等的解释是不完全的。直线的斜率和截距还极大地受参数Cox,Coy,Dx,Dy的影响。该图解并非总是有效。本文还给出了一般式Cly/Clx-Cly在其它方面的可能应用。  相似文献   

12.
采用最新的量子化学半经验计算方法MNDO-PM3,对作为粘土矿物结构基元的六元环分子体系进行了结构与能量的计算,揭示了结构变形的精确程度,并利用能量的差异大小,讨论了几种同分异构体的稳定性。  相似文献   

13.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

14.
15.
In solution thermodynamics, and more recently in surface chemistry, it is well established that relationships can be found between the free energies of formation of aqueous or surface metal complexes and thermodynamic properties of the metal ions or ligands. Such systematic dependencies are commonly termed linear free energy relationships (LFER). A 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model has been used to model “in house” and literature sorption edge data for eleven elements: Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) to provide surface complexation constants for the strong sites on montmorillonite. Modelling a further 4 sets of sorption isotherms for Ni(II), Zn(II), Eu(III) and U(VI) provided complexation constants for the weak sites. The protolysis constants and site capacities derived for the 2SPNE SC/CE model in previous work were fixed in all of the calculations. Cation exchange was modelled simultaneously to provide selectivity coefficients. Good correlations between the logarithms of strong SKx−1 and weak W1Kx−1 site binding constants on montmorillonite and the logarithm of the aqueous hydrolysis constants OHKx were found which could be described by the following equations: Strong (≡SSOH) sites:
SlogKX−1=8.1±0.3+(0.90±0.02)logOHKX  相似文献   

16.
Proton binding constants for the edge and basal surface sites of kaolinite were determined by batch titration experiments at 25 °C in the presence of 0.1 M, 0.01 M and 0.001 M solutions of NaNO3 and in the pH range 3-9. By optimizing the results of the titration experiments, the ratio of the edge sites to the basal surface sites was found to be 6:1. The adsorption of Cd(II), Cu(II), Ni(II), Zn(II) and Pb(II) onto kaolinite suspensions was investigated using batch adsorption experiments and results suggested that in the lower pH range the metallic cations were bound through non-specific ion exchange reactions on the permanently charged basal surface sites (X). Adsorption on these sites was greatly affected by ionic strength. With increasing pH, the variable charged edge sites (SOH) became the major adsorption sites and inner-sphere specifically adsorbed monodentate complexes were believed to be formed. The effect of ionic strength on the extent of adsorption of the metals on the variable charged edge sites was much less than those on the permanently charged sites. Two binding constants, log K(X2Me) and log K(SOMe), were calculated by optimizing these constants in the computer program FITEQL. A model combining non-specific ion exchange reactions and inner-sphere specific surface complexations was developed to predict the adsorption of heavy metals onto kaolinite in the studied pH range. Linear free energy relationships were found between the edge site binding constants and the first hydrolysis constants of the metals.  相似文献   

17.
攀西裂谷内陆盆地自由热对流应力分析及盆地沉降   总被引:2,自引:0,他引:2       下载免费PDF全文
康滇地区裂谷作用已得到证实,但形成这种地堑地垒的格局有多种解释,以传统的地质力学分析为主。笔者借以热力学的自由热对流原理来加以论述:攀西巨厚的火山岩体在下覆异常地幔热作用下,发生自由热对流,引起热量散失,使地壳沉降与隆起不均衡,生成地堑地垒的格局。自由对流单元的侧向迁移,使盆地形成非对称性。  相似文献   

18.
19.
In this paper, the behaviors of aqueous zinc sorption by hydroxyapatite in the co-existence of Pb^2+, Cd^2+ and Cu^2+ are investigated, the effects of Pb^2+, Cd^2+ and Cu^2+ on the sorption of Zn^2+ are discussed, and the hydroxyapatite sorption capabilities for Pb^2+, Cd^2+, Cu^2+ and Zn^2+ are compared. The experimental results show that the Zn^2+ removal efficiency decreases gradually with the increase of the Cd^2+ concentration of the solution, and there is no sorption preference between Cd^2+ and Zn^2+. On the other hand, the Zn^2+ removal efficiency rapidly decreases rapidly with the increase of the Cu^2+ concentration of the solution, and there is a clear sorption preference between Cu^2+ and Zn^2+. It is noticed that the Zn^2+ removal efficiency is hardly changed with the variance of Pb^2+ concentration because the removal mechanisms for these two ions are totally different. It is concluded that the adsorption affinities of the heavy metals for the hydroxyapatite follows this sequence: pb^2+〉 Cu^2+〉 Cd^2+〉 Zn^2+.  相似文献   

20.
国际地层表   总被引:31,自引:14,他引:17  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号