共查询到16条相似文献,搜索用时 78 毫秒
1.
采用NASA Goddard Earth Science DAAC发布的2001—2010年MODIS水云云水含量和水云粒子有效半径资料, 选取西南地区(四川、重庆、云南、贵州),分析了水云云水含量和水云粒子有效半径的多年平均空间分布特征,对年和季节平均水云云水含量和粒子有效半径进行了线性趋势分析,并进行了显著性检验。结果表明:西南地区年和季节多年平均云水含量在海拔高的地方偏少,在海拔低的地方偏多;年和季节多年平均粒子有效半径的空间分布特征与云水含量相反。云水含量具有季节差异性,秋季和夏季是云水含量最丰富的季节,春季和冬季较少;粒子有效半径的季节差异较小。10年中云水含量呈减少趋势,春季和冬季云水含量减少趋势明显;而粒子有效半径无显著变化趋势。 相似文献
2.
选用2008年1月—2014年10月的Cloud Sat/CALIPSO卫星资料,对中国北方两个4°×4°区域云垂直结构及其微物理参量进行了对比研究,区域1(114~118°E,37.5~41.5°N)和区域2(110°E~114°E,37.5~41.5°N)纬度相同经度不同。结果表明:1)区域1(E1)和区域2(E2)暖云层、混合云层和冷云层的云出现概率(Cloud Occurrence Probability,COP)差别较大。E1暖云层COP春季最大,E2则在夏、秋季达到较大值;E1混合层COP最大值出现在冬季,E2则出现在春季;2个区域冷云层COP均在春季达到最大。2)2个区域的COP高值区厚度有明显的季节性差异,E1的COP高值主要出现在夏、冬季,E2则主要出现在春、夏季。E1秋、冬季云体雷达回波最大值强于E2,但春、夏季弱于区域1。3)E2在春、秋季的液水含量、冰水含量、云滴有效半径均高于E1。 相似文献
3.
利用欧洲数值预报中心(ECMWF)发布的第一代全球分辨率ERA-Interim再分析数据,分析了1979~2014年天山山区水汽含量和云水含量的空间分布特征。结果显示:(1)水汽含量的高值中心出现在伊犁河谷地区,中心值域在10—11kg m-2之间,低值区位于天山中部的巴音布鲁克附近,中心值域在5—6kg m-2之间;夏季水汽含量最丰富,在8—11kg m-2之间。(2)云液水含量的高值区出现在博格达山北坡,而云冰水含量的高值区在西天山海拔较高的托木尔峰地区,低值区均在伊犁河谷等海拔低的地区;夏季云液水含量、云冰水含量均呈减少趋势,云冰水含量较云液水减少的更为明显,下降速率为0.28kg kg-1/10a;(3)垂直分布上,云液水含量在600hpa左右的高空出现高值区,中心最大值为10kg kg-1;云冰水含量的高值区则出现在500hpa左右的高空,为11kg kg-1;在对流层大气中云冰水含量值远大于云液水,且云冰水发展的高度较云液水更高。 相似文献
4.
利用CloudSat卫星资料分析云微物理和光学性质的分布特征 总被引:3,自引:0,他引:3
利用2007年1月2010年12月高垂直分辨率CloudSat卫星的2B数据产品,对云微物理特征量(包括云中液态水/冰水含量、液态水/冰水路径、云滴有效半径等)以及云光学参数(云光学厚度等)的全球分布和季节变化进行了统计分析,并研究了云微物理性质对光学性质的影响。结果表明,冰水路径分布在北美南部、南美大陆、非洲大陆、澳大利亚和南亚的陆地上空,以及太平洋、大西洋和印度洋的洋面上空,高值区最大值达600 g·m-2以上;垂直方向上,高值区位于赤道地区8 km附近以及中纬度地区4~8 km高度上。液态水路径在300 g·m-2以上的高值区主要位于太平洋、印度洋和大西洋的中低纬度海域上空,垂直上液态水含量随高度递减。冰云有效半径在高纬度地区近地面层达200μm以上,在赤道附近4~8 km上有1个高值区,南北半球中纬度地区2~4 km上有2个高值区,最大值均达到80μm以上。在1 km以下的边界层水云有效半径值较大,达到12μm以上。总云光学厚度在全球大部分地区40,高值区普遍位于中高纬度的广阔地区和低纬度靠近大陆的洋面上空;垂直方向上,云光学厚度的高值集中在2 km以下的边界层。云光学厚度的分布受云量、云水含量和云滴有效半径的影响,云量大的地区基本为云光学厚度的大值区。 相似文献
5.
中国地区夏季云粒子尺寸的时空分布特征 总被引:4,自引:1,他引:4
利用CloudSat卫星资料,分析了2006~2008年中国地区夏季月平均云粒子有效半径的垂直和区域变化特征。结果显示,水云粒子有效半径在对流层低层达到最大,并随高度增加而减小。30°N纬度带的水云相对以南及以北纬度带的粒子有效半径偏大。6月水云粒子有效半径较大,应与梅雨季节有密切联系。对于中国北部和中部,水云粒子有效半径在西部较东部偏大,而在南部地区,东西部差异不明显。不同纬度带上的冰云粒子有效半径相类似,在冰云下边界最大,随高度增加而减小。水云和冰云的云粒子尺度的年际变化不明显。对上述特征的成因分析表明,高原地形以及东亚夏季风对月平均云粒子有效半径具有明显影响。所揭示的云粒子有效半径特征为天气和气候模式改进、人工影响天气及云—辐射—气候相互作用等研究提供了重要的基础信息。 相似文献
6.
中国地区夏季6~8月云水含量的垂直分布特征 总被引:2,自引:4,他引:2
基于观测资料的夏季云水含量时空分布情况对于数值天气预报、气候预测以及人工影响天气试验都十分重要。本文利用CloudSat卫星资料, 分析了2006~2008年中国地区夏季月平均云水含量的垂直和区域变化特征。结果显示, 青藏高原地形以及东亚夏季风对月平均云含水量分布具有明显影响。中国中部纬度上对流层中层的月平均液态水含量比南部及北部的量值大。各月平均云液水含量垂直廓线存在两个不同高度上的峰值区, 原因可能主要是受大尺度参数的控制, 以及受到青藏高原和东亚季风环流的影响。平均冰水含量纬向垂直分布的高值区主要在对流层中上部。本文中所揭示的云水含量特征为天气和气候模式改进、人工影响天气及云—辐射相互作用提供了重要的基础信息。 相似文献
7.
利用MODIS数据反演多层云光学厚度和有效粒子半径 总被引:2,自引:0,他引:2
利用卫星资料反演云微物理参数不仅有助于对天气变化的监测和预报,而且对人工影响天气的研究十分有益.目前卫星反演云微物理参数的算法一般是假设视场中只有一层云,但是实际环境中多层云出现很频繁.文中研究了多层云的光学厚度和有效粒子半径微物理参数的反演算法,主要针对薄的冰云覆盖在低层水云的多层云情形.算法利用中分辨率成像光谱仪(MODIS)吸收通道和非吸收通道同时进行反演,在此基础上利用SBDART辐射传输模式模拟冰云覆盖在低层水云上的多层云对云微物理参数反演的影响,模拟表明反演时将多层云作为单层云处理会使反演结果产生较大误差.为此,文中提出了云光学厚度和有效粒子半径反演算法中要考虑多层云的因素,并设计了一套云光学厚度和有效粒子半径反演方案.该方案使用SBDART辐射传输模式建立不同观测几何条件、下垫面类型、大气环境等条件下以光学厚度和有效粒子半径为函数变量的多层云、水云和冰云辐射查找表.经过云检测、云相态识别和多层云检测后,在该查找表的基础上,对MODIS通道1和通道7的数据采用最小方差拟合法反演光学厚度、有效粒子半径.利用该方案对2006年7月12日TERRA卫星MODIS数据进行反演试验,反演结果与NASA发布的MOD06产品中云的光学厚度和有效粒子半径的结果较一致,表明方案具有合理性. 相似文献
8.
FY 3A三个通道资料反演水云有效粒子半径的研究 总被引:1,自引:0,他引:1
基于水汽吸收波段云的反射率主要依赖于云粒子大小的原理,利用SBDART辐射传输模式和FY-3A极轨气象卫星可见光红外扫描辐射计(VIRR)的通道3(3.7μm)、中分辨率光谱成像仪(MERSI)的通道6(1.64μm)和通道7(2.13μm)所提供的探测数据进行了水云有效粒子半径的反演和比较。发现,1.64、2.13和3.7μm三个通道均能定最反演有效粒子半径的大小,其中1.64和2.13μm通道对大粒子的敏感性较高,3.7μm通道在光学厚度较小时敏感性好。三个通道的有效粒子半径反演产品与MODIS有效粒子半径产品具有较好的相关性。 相似文献
9.
利用2007年1月—2010年12月的Cloud Sat-CALIPSO卫星资料,对中国东部及其周边海域(20°—35°N,103°—137°E)夏季(7—8月)深对流云的云水路径、云水含量、粒子有效半径以及粒子数浓度等微物理变量进行了统计分析,并研究了上述微物理变量的概率密度分布以及垂直变化。结果表明:中国东部夏季深对流云液态水路径可以达到1 000 g/m~2,海上液态水路径逐渐减小到600 g/m~2左右,在海洋上深对流云的冰水路径约为1 600 g/m~2,而在中国东部冰水路径大约为1 200 g/m~2;夏季深对流云的液态水含量在47—104 mg/cm3范围内分布概率最大,分布高度在5 km左右达到极大值,冰水含量的分布概率单调递减,在7—11 km高度的值大于200 mg/cm~3;液态水粒子的有效半径在8—13μm的分布概率最大,其有效半径随着高度的增大而逐渐增大,冰粒子有效半径在108μm处分布概率达到最大,最大值出现在5.8 km高度处且值为108μm;液态水粒子数浓度在55—65个/cm~3范围内分布概率最大,数浓度极大值出现的高度最大值为4.6 km,冰粒子数浓度小于297个/L,在5 km高度以上随着高度增加而逐渐增大,到12.3 km高度处达到最大。 相似文献
10.
东亚地区云微物理量分布特征的CloudSat卫星观测研究 总被引:3,自引:3,他引:3
本文利用2007~2010年整四年最新可利用的CloudSat卫星资料, 对东亚地区(15°~60°N, 70°~150°E)云的微物理量包括冰/液态水含量、冰/液态水路径、云滴数浓度和有效半径等的分布特征和季节变化进行了分析。本文将整个东亚地区划分为北方、南方、西北、青藏高原地区和东部海域五个子区域进行研究, 结果显示:东亚地区冰水路径值的范围基本在700 g m-2以下, 高值区分布在北纬40度以南区域, 在南方地区夏季的平均值最大, 为394.3 g m-2, 而在西北地区冬季的平均值最小, 为78.5 g m-2;而液态水路径的范围基本在600 g m-2以下, 冬季在东部海域的值最大, 达到300.8 g m-2, 夏季最大值为281.5 g m-2, 分布在南方地区上空。冰水含量的最高值为170 mg m-3, 发生在8 km附近, 南方地区夏季的值达到最大, 青藏高原地区的季节差异最大;而液态水含量在东亚地区的范围小于360 mg m-3, 垂直廓线从10 km向下基本呈现逐渐增大的趋势, 峰值位于1~2 km高度上。冰云云滴数浓度在东亚地区的范围在150 L-1以下, 水云云滴数浓度的值小于80 cm-3, 垂直廓线的峰值均在夏季最大。冰云有效半径在东亚地区的最大值为90 μm, 发生在5 km左右;水云有效半径在东亚地区的值分布在10 km以下, 最大值为10~12 μm, 基本位于1~2 km高度上。从概率分布函数来看, 东亚地区冰/水云云滴数浓度的分布呈现明显的双峰型, 其他量基本为单峰型。本文的结果可以为全球和区域气候模式在东亚地区对以上云微物理量的模拟提供一定的观测参考依据。 相似文献
11.
利用2011年11月-2016年10月Terra卫星MODIS(moderate-resolution imaging spectroradiometer)3级大气产品数据(MOD08_M3)对中国陆地区域冰云发生概率、有效粒子半径、光学厚度和冰水路径的水平分布与季节变化进行分析。结果表明:冰云特性的水平分布和季节变化特征与东亚季风和强对流天气的发生存在一定联系。近5年冰云发生概率呈上升趋势,季节性变化规律明显,高值区出现在青藏高原东北部;冰云有效粒子水平分布呈现由西南向东北逐渐增加的趋势,总体季节性变化特点不明显,但在纬度较高地区出现随季节变化特征;冰云光学厚度与冰水路径水平分布和季节变化趋势大致相同,呈东南向西北递减趋势,总体季节性变化明显。 相似文献
12.
中国西北地区云的分布及其变化趋势 总被引:8,自引:1,他引:8
利用1983年7月—2001年9月ISCCP D2云的月平均资料,针对西北地区15种不同类型云的分布特征进行了分析,给出了中、低云量之和以及高云量在3个气候子区的多年变化趋势,初步探讨了其形成机制。结果表明:水层云、冰层云、水雨层云、冰雨层云和深对流云的光学厚度和云水路径值最大;水层云主要出现在天山山区、北疆地区和陕西南部,冰层云主要出现在北疆地区,水雨层云、冰雨层云和深对流云以及水高层云、冰高层云、卷层云的云量高值区在天山—昆仑山—祁连山一带以及陕南和/或陇南地区,因此上述地区也是有利于人工增水作业的地区。近20年中,高云量在3个气候区都呈明显下降趋势,中、低云量之和则呈上升趋势。西北地区云与地气系统之间可能存在这样一个过程:地面气温的升高,促使地面蒸发加剧,从而导致中、低云量增多而使降水增多,同时高云云量减少。 相似文献
13.
利用NCEP 1980-2009年可降水量的逐月再分析资料,分析了30年来西南地区可降水量的时空分布特征和变化趋势.结果表明:受地形等地理环境和气候的影响,西南地区年、季节可降水量分布均有显著的地区性差异,东南多,西北少;可降水量的季节变化明显,夏季远大于冬季,秋季略高于春季;可降水量的年内分配不均,7月最大,8月次之,1月最少;30年来,西南地区年可降水量呈波动变化,略有增加,偏多和偏少年交替出现,春季和冬季可降水量呈线性增多.西南地区可降水量空间分布既有整体一致型,也存在反向型. 相似文献
14.
采用1980~2009年云水量和可降水量的NCEP逐月再分析资料,通过统计分析,研究30a来西南地区(云南、贵州、讴庆、四川)云水量与可降水量比值的时空分布特征和变化趋势。结果表明:(1)西南地区年、季17孟水量与可降水比值均具有明显的地区性差异,由西北向东南递减,高值区位于川西高原;(2)云水量与可降水比值年内分布不均匀,从2月到8月逐渐减小,9月至1月逐渐增大,同时,季节差异较大,夏季最小,冬季最大;(3)30a来,整个西南地区年、夏季和秋季云水量与可降水量比值呈显著减少趋势。 相似文献
15.
中国地区云光学厚度和云滴有效半径变化趋势 总被引:3,自引:0,他引:3
利用ISCCP最新的D2云气候资料集和MODIS云的资料,给出中国地区云的光学厚度和云滴有效半径的分布特征;分别对季节平均和年平均时间序列进行线性趋势分析,并进行了显著性检验。结果表明:夏季云的光学厚度和有效半径的变化趋势最显著。结合云量变化情况,可发现云滴有效半径的变化对云光学厚度的影响可能在夏季最大,也就是说,气溶胶的间接气候效应可能在夏季最强;云量、云光学厚度和云滴有效半径的变化也表明长江以南地区和青藏高原地区可能是气溶胶间接气候效应比较显著的地区。中国地区冰云光学厚度与有效直径的相关具有很强的区域特征,说明冰云的微物理机制比水云更复杂。 相似文献