共查询到15条相似文献,搜索用时 93 毫秒
1.
太湖典型湖区真光层深度的时空变化及其生态意义 总被引:13,自引:0,他引:13
利用1998~2004年在太湖不同湖区进行的多次水下辐照度观测资料及全湖典型湖区13个站点1993~2003年的悬浮物和风速资料, 分析了PAR真光层深度的影响因素, 并获得太湖典型湖区真光层深度的时空变化以及2号点真光层深度的光谱分布. 结果表明, PAR真光层深度主要受悬浮物浓度影响, 其次则是叶绿素a浓度, 溶解性物质对其影响甚微. 1993~2003年典型湖区PAR真光层深度年均值在1.04~1.95 m之间变化(均值为1.35±0.23 m), 空间上大致可以分为3类区, 其中湖心区、河口区最小, 为Ⅰ类区; 梅梁湾、五里湖、贡湖湾其次, 为Ⅱ类区; 东太湖最大, 为Ⅲ类区, 对应的均值分别为1.1, 1.4, 2.0 m左右. 不同湖区真光层深度季节变化存在一定差异, 其中湖心区真光层深度夏、秋2季大于冬、春2季, 梅梁湾是冬季要大于其他3季, 而东太湖则是冬季均要小于其他3季, 五里湖、贡湖湾和河口区4季变化则不是很明显. 真光层深度的光谱分布最小值出现在400 nm的蓝光波段, 最高值出现在580 nm附近的绿光波段. 1998~1999年在2号点每季多日连续观测得到PAR真光层深度春、夏、秋、冬4季的均值分别为2.00±0.21, 2.52±0.45, 1.58±0.24, 2.00±0.15 m, 而浮游植物吸收的440 nm峰值对应的真光层深度则只有0.81~1.47 m(均值为1.07±0.29 m), 明显低于1.98±0.41 m的平均PAR真光层深度. 相似文献
2.
为了研究抚仙湖紫外辐射(UVR)和光合有效辐射(PAR)衰减的时空特征及其与有色可溶性有机物(CDOM)、悬浮物(SS)、浮游植物(叶绿素a表征)等因子的关系,于2014年10月(秋季)、2015年1月(冬季)开展现场调查,结果显示:秋季不同波长(段)的漫射衰减系数Kd(305)、Kd(340)和Kd(PAR)分别为1.27±0.12、0.68±0.11和0.32±0.13 m-1,冬季分别为1.13±0.10、0.63±0.07和0.36±0.07 m-1;秋季CDOM的不同波长吸收系数ag(254)、ag(305)和ag(340)分别为4.09±0.26、1.18±0.09和0.57±0.05 m-1,冬季分别为2.95±0.24、0.61±0.11和0.11±0.07 m-1,秋季ag(254)、ag(305)和ag(340)显著高于冬季;秋季Kd(305)显著大于冬季,这与秋季(雨季)较高的CDOM丰度、浮游植物生物量(及SS浓度)有关.秋季ag(305)/Kd(305)、ag(340)/Kd(340)均显著高于冬季;秋季及秋冬季整体而言,ag(254)与Kd(305)、Kd(340)呈显著正相关,各多元逐步回归方程中均包含ag(254),说明CDOM吸收对UVR的衰减有重要贡献.空间差异方面,秋季北部的ag(254)、Kd(305)和Kd(340)显著高于南部,冬季南北部无明显差异,或与雨旱季北岸河流输入的CDOM和SS的情况有关.此外,浮游植物对UV-B衰减的影响和SS(与CDOM的交互作用)对UV-A衰减的影响更在于季节变化方面,而影响UVR、PAR衰减的各因子的相对贡献有待进一步量化. 相似文献
3.
云南程海浮游植物初级生产力的时空变化及其影响因子 总被引:1,自引:0,他引:1
2016年4月-2017年2月,采用黑白瓶法研究了云南程海单点(码头点位)浮游植物初级生产力的垂直分布及其季节变化,同时基于全湖9个点位的现场调查和生产力垂向归纳模型(VGPM)估算并探讨了程海浮游植物初级生产力的时空变化及其主要影响因子.结果显示,码头点位的年均(均值±标准误)水柱(0~3 m)总初级生产力(GPPC)、净初级生产力(NPPC)和呼吸消耗量(RC)分别为5.40×103±0.64×103、2.36×103±0.63×103和3.06×103±0.82×103 mg O2/(m2·d);不论春夏季(4-8月)、秋冬季(9月-次年2月)还是全年,码头点位的单位生物量GPP(GPP/Chl.a)和单位生物量NPP(NPP/Chl.a)的最大值和最小值均分别出现在水下0.5 m和3.0 m处.经VPGM估算,程海全湖的初级生产力(PPeu)年均值为6.54×103±0.30×103 mg C/(m2·d)(2.74×103~18.62×103 mg C/(m2·d)).PPeu的时空变化方面,春夏季是PPeu快速上升的时节,秋冬季PPeu的月变化则呈波动状态,春夏季与秋冬季PPeu无显著性差异;PPeu整体空间异质性较弱,仅在降水最为充沛的7、8月表现出南北向的异质性,这与降水条件和流域营养盐输入的空间异质性有关.回归分析发现,虽然程海PPeu的主要影响因子具有季节异质性,但不论春夏季、秋冬季还是全年,浮游植物生物量均是重要的影响因子,水温亦是春夏季的重要影响因子. 相似文献
4.
秋季太湖水下光场结构及其对水生态系统的影响 总被引:3,自引:1,他引:2
水生态系统中光能的分配很大程度上决定了水生态系统的结构和功能,利用2007年11-12月太湖水体光学特性和组分浓度数据,对秋季太湖水下光场结构特征和水体组分光竞争能力的表征光学量(漫衰减系数、平均余弦)和影响因素(吸收系数比重)进行了分析研究.结果表明,秋季太湖水下辐照度呈现单峰分布,最高值为583nm左右:根据Kd可将黄质和非色素物质主导程度的强弱分为弱、较强、强三个等级;Kd(PAR)平均值为4.61±1.54m-1,水体真光层厚度平均值为1.11±0.35m;太湖水下光场的光能主要分布在青光和黄绿光波长范围内,约占总能量的60%,蓝光和红光波长范围内的能量约占30%,这样的光谱结构有利于铜绿微囊藻和斜生栅藻的生长. 相似文献
5.
光合有效辐射(PAR)的漫衰减系数KPAR是水环境研究中经常使用的一个光学量.水体的漫衰减系数与波长紧密相关,随着水体深度的不断增加,PAR频谱收缩到具有更小衰减系数的波长处,对上层水体或者混合均匀的水体而言,此时的KPAR与水深关系极为密切.为了更为准确的描述PAR剖面,获取更可靠的光学衰减参数,强调了KPAR数值的模糊性,倡导正确表达KPAR的垂直变化. 相似文献
6.
太湖秋季真光层深度空间分布及浮游植物初级生产力的估算 总被引:5,自引:5,他引:5
基于2004年10月对全湖67个采样点水下光合有效辐射(photosynthetically active radiation:PAR)和各光学活性物质浓度的测定,分析了真光层深度的空间分布及其影响因素.利用实测的叶绿素a浓度,真光层深度,PAR强度,由水温计算得到的最佳固碳速率以及由经纬度计算的日照周期等,在垂向归纳模型(vertically generalized production model:VGPM)的支持下估算了全湖秋季浮游植物初级生产力.真光层深度的变化范围为0.37-5.27m(均值为1.52±1.06m),高值出现在东太湖、胥口湾、东西山之间等水生植物分布茂盛的草型湖区,而在梅梁湾、湖心区以及西南面的开阔湖区真光层深度均较小.回归分析显示,真光层深度主要受制于非色素颗粒物浓度,浮游植物和溶解性有机物的贡献相对要小得多.叶绿素a浓度和VGPM模型估算的浮游植物初级生产力变化范围分别1.21-53.59μg/L、77.4-2484.9mg/(m2·d),其时空分布基本一致,高值出现在富营养化的藻型湖区梅梁湾,低值出现在胥口湾和西南开阔湖区.VGPM模型和经验模式对比结果显示两者值比较接近并存在显著相关(r2=0.79.P<0.0001).两类模型全湖的均值分别为694.5±492.0、719±84±315.4mg/(m2·d),但由于VGPM模型考虑到真光层深度、温度、PAR强度以及日照周期对初级生产力的影响,其变化范围明显大于经验模型,也更能反映初级生产力的空间变化. 相似文献
7.
基于2014年10月2016年7月在云南程海和阳宗海开展了4个季度(秋季,10月;冬季,1月;春季,4月;夏季,7月)的调查,研究了两个湖泊的水体分层特征,探讨了热力分层及其变化与其他环境因子对浮游植物生物量的潜在影响,结果显示:程海和阳宗海水体分层的特征均为冬季混合、春季形成分层、夏秋季分层稳定,两湖均属暖单次混合型湖泊;程海分层期温跃层的平均深度(顶界)、厚度和强度分别为17.70±3.89 m、5.54±4.44 m和0.67±0.43℃/m,阳宗海的分别为12.53±3.35 m、8.25±4.85 m和0.53±0.43℃/m.在热力分层稳定期,两湖底层达到缺氧甚至厌氧状态,底层的电导率总体较表层高.调查期间,两个湖泊水柱表层浮游植物生物量(以叶绿素a浓度表征)均在冬季出现峰值,程海和阳宗海的分别为19.22±11.08和45.82±9.41μg/L;进一步分析发现,热力分层的消退可能是导致水体表层无机营养盐升高(底层供给)的重要原因,加之适宜的光热条件可诱导两湖冬季水华的发生;在其他季节转化期间,浮游植物生物量变化的主要影响因子亦具有一定的共性及湖泊与季节异质性. 相似文献
8.
水下光照分布是影响水生态系统的重要因素,研究光合有效辐射衰减特征对于沉水植物恢复具有一定的指导意义.根据沉水植物生物量资料,将东太湖划分为沉水植物茂盛区、沉水植物稀疏区和无植物区3种区域.基于2019年夏季原位水下光场资料,探讨了东太湖光衰减特性和光照衰减因子的空间差异以及不同区域内的主导衰减因子,分析了东太湖的稳态阶段和富营养化水平,并阐述了真光层深度与透明度的关系,以期为东太湖沉水植物恢复和保护提供相关资料.结果表明:东太湖不同区域光衰减特性差异显著,光合有效辐射衰减系数(k d(PAR))在0.73~11.80 m^-1之间变化,真光层深度范围为0.39~6.31 m.不同区域的无机悬浮物和有机悬浮物浓度存在显著性差异,稀疏区叶绿素a浓度显著高于茂盛区,而与无植物区没有显著差异,有色可溶性有机物(CDOM)吸收系数在3种区域无显著性差异.k d(PAR)与无机、有机悬浮物的线性拟合效果较好,而与叶绿素a、CDOM拟合较差.水体吸收和散射作用是茂盛区光衰减的主要原因,无植物区域主导衰减因子仅有无机悬浮物,稀疏区由叶绿素a和无机悬浮物共同主导,是生态修复需要重点关注的区域,有机悬浮物和CDOM对东太湖光照衰减没有太大影响.东太湖目前正处于从草型稳态向藻型稳态过渡的阶段,整个湖泊属于富营养水平,真光层深度大约为透明度的2.7倍. 相似文献
9.
10.
太湖叶绿素a的时空分布特征及其与环境因子的相关关系 总被引:11,自引:3,他引:11
2012年3月至2013年2月逐月对太湖水体叶绿素a含量、主要环境因子及不同门类浮游植物密度进行测定,分析太湖叶绿素a含量和不同门类浮游植物密度的时空分布特征,探讨太湖叶绿素a含量和环境因子与不同门类浮游植物密度之间的相关关系并建立逐步回归方程.结果表明:太湖叶绿素a含量全年平均值为22.33±37.65 mg/m3,变幅为0.48~347.85 mg/m3;叶绿素a含量随季节变化明显,夏季最高、秋冬季次之、春季最低;在空间分布上,太湖北部和西北部最高,东部和南部最低.蓝藻门、隐藻门、硅藻门、绿藻门密度随时间呈峰型变化,均在10月份达到最大值,黄藻门、金藻门和裸藻门密度的变化趋势呈"V"型,在春、冬两季出现较大值;不同门类浮游植物密度基本在西北区出现最大值.全湖叶绿素a含量的显著影响因子有总有机碳、亚硝态氮、溶解氧、pH、水温和磷酸盐;lg(YChl.a)与lg(XTN)呈显著负相关,与lg(XTP)呈极显著正相关,与lg(XN/P)呈极显著负相关.太湖叶绿素a含量与蓝藻门、隐藻门、裸藻门与甲藻门密度有显著相关关系. 相似文献
11.
Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological environmental significance 总被引:10,自引:0,他引:10
ZHANG Yunlin QIN Boqiang HU Weiping WANG Sumin CHEN Yuwei CHEN Weimin 《中国科学D辑(英文版)》2006,49(4):431-442
Euphotic depth can be defined as the portion of wa- ter column that supports the net primary productivity. Its lower end is the critical depth, namely, the depth measured when the daily net primary productivity is zero[1]. In the ecosystems of oceans, lakes and rivers, phytoplankton live in the euphotic depth and euphotic depth is usually taken as the lower boundary, when studying the primary productivity and biomass of phytoplankton; therefore the corresponding depth is sometimes called the t… 相似文献
12.
云南程海沉积物碳酸盐来源辨识 总被引:8,自引:2,他引:6
碳酸盐是湖泊沉积物的组成部分,其碳、氧同位素组成是恢复湖区古气候/古环境的有效代用指标.沉积物碳酸盐包括物源区带来的外源碳酸盐和湖泊内生沉淀产生的自生碳酸盐,其中只有自生碳酸盐才具有古气候指示意义.故沉积物碳酸盐来源辨识是开展碳酸盐古环境记录研究的基础和前提.通过多种方法的综合判别,证明了程海沉积物碳酸盐主要是自生碳酸盐,为开展碳酸盐记录研究提供了可靠依据.程海是开展碳酸盐碳氧同位素与古气候研究的理想场所,尤其值得深入研究. 相似文献
13.
采用GPS定位,在程海设置了3个断面9个采样点,对各种形态磷进行了为期1 a的研究,分析了高原深水湖泊程海磷形态分布和变化.结果表明:程海中总磷含量范围为0.008~0.155 mg/L,年平均值为0.046 mg/L,含量水平已经较高.存在形态是颗粒态总磷占54.35%;溶解态有机磷占19.56%;溶解态无机磷占26.09%.各形态磷时间分布和变化与水生生物特别是浮游植物生命活动和周期变化密切相关;水平分布格局受浮游生物活动、湖流风动等综合影响;由水表层-亚底层垂直分布比较均匀,湖底层含量不同程度升高. 相似文献
14.
下行漫衰减系数(K_d)是描述水下光场的重要参数,决定水体真光层深度,影响着浮游藻类初级生产力及其分布特征.基于2008—2013年太湖4次大规模野外试验数据,分析太湖水体漫衰减系数特征及其影响因素,建立适用于多种卫星数据且较高精度的太湖水体490 nm处下行漫衰减系数估算模型.结果表明:无机悬浮物是太湖水体漫衰减系数的主要影响因素;红绿波段比值(674 nm/555 nm)最适合于太湖K_d(490)估算,模型反演精度较高(N=72,R~2=0.72,RMSE=0.89 m~(-1),MAPE=21.58%);利用实测光谱数据,模拟得到MODIS/EOS、OLCI/Sentinel-3、GOCI/COMS和MSI/Sentinel-2等主要传感器波段的信号,构建适用于多种卫星传感器K_d(490)估算的红绿波段模型,建模精度较高(N=72,R~20.7,RMSE0.9 m~(-1),MAPE22.0%),且进行了验证(N=37,R~20.7,RMSE0.9 m~(-1),MAPE22.0%). 相似文献
15.
开展高原湖泊酵母菌多样性研究,能够为湖泊生态系统的保护提供理论依据,并为其中特殊酵母菌资源的开发及利用奠定基础.结合经典分类法及26S rDNA D1/D2区域序列分析,对分离自云南抚仙湖湖水中的553株酵母菌进行系统分类,运用SPSS 19.0软件比较不同区域酵母菌多样性,并采用多元统计方法定量分析酵母菌空间分布特征及其与理化因子之间的关系.结果显示:抚仙湖水体中分布22属52种和1个潜在新分类单元的酵母菌.理化因子差异性分析表明,北沿岸区总有机碳浓度明显高于南沿岸区.Pearson分析则表明,抚仙湖湖水总有机碳浓度与酵母菌丰度呈显著正相关.另外,酵母菌-环境冗余分析显示,抚仙湖酵母菌种群结构与总有机碳浓度存在明显相关.研究显示云南抚仙湖酵母菌资源比较丰富,人类活动对其中酵母菌空间分布具有一定影响. 相似文献