首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New samples returned by China Chang’e-5 (CE-5) mission offer an opportunity for studying the lunar geologic longevity, space weathering, and regolith evolution. The age determination of the CE-5 samples was among the first scientific questions to be answered. However, the precious samples, most in the micrometer size range, challenge many traditional analyses on large single crystals of zircon developed for massive bulk samples. Here, we developed a non-destructive rapid screening of individual zirconium-containing particle for isotope geochronology based on a Micro X-ray fluorescence analysis (µXRF). The selected particles were verified via scanning electron microscopy (SEM), 3D X-ray microscopy (XRM), and focused ion beam scanning electron microscopy (FIB-SEM) techniques, which showed that zirconium-bearing minerals with several microns were precisely positioned and readily suitable for site-specific isotopic dating by second ion mass spectrometry (SIMS). Such protocol could be also applicable in non-destructively screening other types of particles for different scientific purposes. We therefore proposed a correlative workflow for comprehensively studying the CE-5 lunar samples from single particles on nanometer to atomic scales. Linking various microscopic and spectromicroscopic instruments together, this workflow consists of six steps: (1) single-particle selection with non-destructive µXRF technique, (2) 2D/3D morphological and structural characterization with a correlative submicron 3D XRM and nanoscale resolution FIB-SEM imaging methods, (3) SEM analysis of the surface morphology and chemistry of the selected particle, (4) a series of microscopic and microbeam analyses (e.g., SEM, electron probe microanalysis, and SIMS) on the cross-section of the selected particle to obtain structural, mineralogical, chemical, and isotopic features from the micron to nanometer scale, (5) advanced 2D/3D characterization and site-specific sample preparation of thin foil/tip specimens on a microregion of interest in the selected particle with FIB-SEM technique, and (6) comprehensive analyses on the FIB-milled specimens at nanometer to atomic scale with synchrotron-based scanning transmission X-ray microscopy, analytic transmission electron microscopy, and atom probe tomography. Following this technical roadmap, one can integrate multiple modalities into a uniform frame of multimodal and multiscale correlated datasets to acquire high-throughput information on the limited or precious terrestrial and extraterrestrial samples.  相似文献   

2.
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.  相似文献   

3.
Microscopic-scale imaging of reduced zones on the surfaces of minerals can be achieved by reaction with dilute Ag(I) solutions and subsequent analysis using synchrotron X-ray microscopy (XRM) above the Ag K-edge (25.5 keV). The principal reductant is Fe(II), but other reductants such as sulfide may contribute. Reduced zones may exist instrinsically, as in the structure of biotite and augite, or may be generated by reaction with chemical agents such as dithionite or treatment with sulfate-reducing bacteria (SRB). We demonstrate the method on flakes of specular hematite and biotite, as well as on thin sections of different rocks (arfvedsonitic granite, oolitic hematite, diabase, and quartz conglomerate) treated with SRB, and discuss possible artifacts that can occur. To our knowledge, this is the only microscopic technique that can image Fe(II) zones on the surface of an Fe-bearing mineral with monolayer sensitivity.  相似文献   

4.
现代核分析技术在资源环境研究中的应用   总被引:5,自引:1,他引:4  
现代核分析技术是当今核科学的一个重要领域,是现代科学和高新技术发展中应用非常广泛的研究手段。本文论述了多种核分析技术,诸如同步辐射X荧光分析,源激发X射线莹光分析,裂变径迹技术,中子活化分析等对单个流体包裹体,矿物学,热液成矿作用,构造活动,蛇绿岩的形成环境以及大气环境等学科的应用研究。   相似文献   

5.
采用化学组分分析、物相分析、粒度筛析、X射线面扫描分析、矿物分离分析并结合数理统计分析等综合分析技术对微细粒浸染型金矿进行工艺矿物学研究,较为快速、准确地查明该金精矿金的赋存状态.几种分析方法互为补充,结果吻合.  相似文献   

6.
王淞杰  王璐  付建民  丁悦 《地球科学》2014,39(3):357-367
利用偏光显微镜阴极发光技术可观察到其他常规成分结构测试法不易识别或容易忽略的多种矿物的生长结构, 该技术是进行后续成分分析的有效预研究手段, 可为重建矿物形成演化过程提供重要信息.该技术在国际岩石矿物学、油气储层及矿床学领域应用广泛, 但在变质岩研究领域的应用较薄弱.综述该技术在国际超高压变质岩研究领域的应用, 并利用其对大别-苏鲁超高压变质带经典地区的超高压榴辉岩、云母片岩、大理岩进行初步研究, 讨论它在多期微细矿物相快速鉴别、生长环带、微量元素分布规律、双晶纹、出溶结构等内部结构表征方面的应用价值和前景.偏光显微镜阴极发光技术与拉曼光谱、扫描电镜、电子探针等分析技术相结合, 可为我国超高压变质岩的研究开辟和扩展一条新思路.   相似文献   

7.
X射线粉晶衍射仪在大理岩鉴定与分类中的应用   总被引:2,自引:2,他引:0  
大理岩主要有方解石大理岩、白云石大理岩和菱镁矿大理岩三种。以往大理岩是依据偏光显微镜下观察岩石结构构造及矿物成分进行分类定名,由于方解石、白云石、菱镁矿都属于三方晶系,具有闪突起、高级白干涉色、一轴晶负光性和菱形解理等相同晶体光学特征,偏光显微镜下区分十分困难。为了准确鉴定大理岩中碳酸盐矿物种类及其相对含量,本文利用岩石薄片偏光显微镜和X射线粉晶衍射技术对32件大理岩岩石样品进行分析测试。岩石薄片鉴定结果表明:大理岩造岩矿物主要有方解石、白云石、菱镁矿、石英、斜长石、白云母、黑云母、绿泥石、黏土和金属矿物。根据岩石结构构造及矿物组分特征,可把32件大理岩样品划分为方解石大理岩、长英质方解石大理岩、石英绿泥白云石大理岩、白云石大理岩、云英质白云石大理岩和菱镁矿大理岩等15个类型。X射线粉晶衍射分析表明:大理岩造岩矿物主要有方解石、白云石、菱镁矿、石英、斜长石、钾长石、云母、绿泥石、滑石和蒙脱石。综合分析认为:岩石薄片偏光显微镜鉴定技术很难区分方解石、白云石和菱镁矿等碳酸盐矿物,以及细小的石英、钾长石和斜长石、滑石和白云母等鳞片状硅酸盐矿物;X射线粉晶衍射分析技术不仅能准确检测出大理岩中方解石、白云石和菱镁矿等碳酸盐矿物种类及相对含量(方解石、白云石和菱镁矿的X射线衍射主峰有明显差异,d值分别为0.303 nm、0.288 nm和0.274 nm),而且能够有效鉴别岩石中粉砂级斜长石、钾长石与石英(三种矿物的X射线衍射主峰d值分别为0.319 nm、0.324 nm、0.334 nm);且能区分蒙脱石、绿泥石、云母和滑石等层状硅酸盐矿物(四种硅酸盐矿物的X射线衍射主峰d值分别为1.400 nm、0.705 nm、0.989 nm、0.938 nm)。综合岩石薄片偏光显微镜鉴定和X射线粉晶衍射分析结果,最终确定32件大理岩样品划分为22个岩石类型。研究认为:仅根据岩石薄片偏光显微镜鉴定或X射线粉晶衍射技术其中一种方法不能准确鉴定大理岩岩石,应将大理岩岩石野外观察、岩石薄片鉴定和X射线粉晶衍射技术结合起来,才能准确确定大理岩岩石类型。  相似文献   

8.
介绍了微区X射线衍射仪发展的现状,给出了微区X射线衍射仪鉴定物相的研究实例,并讨论了微区X射线衍射法的优、缺点。通过配置有封闭3kWX射线光管、单毛细管透镜、Pixcel探测器和普通CCD视频的Panalytical X’Pert PRO MPDX射线衍射仪,对光片上的铍矿物进行了微区X射线衍射鉴定,结果确定该铍矿物为羟硅铍石。微区X射线衍射法具有微区、微量、原位和无损等优点,能够进行直径在100~300μm范围内的两种或两种以上矿物集合体的物相鉴定。与电子探针等微区手段相互结合、互相补充,鉴定结果更加可靠。  相似文献   

9.
Data from heavy mineral analysis, X-ray fluorescence spectrometry (XRF) and X-ray diffractrometry (XRD) are compared with those obtained from mineral magnetic analysis for a range of glacial diamicton samples taken from the Quaternary sequence in the Isle of Man. These data show that the mineral magnetic approach offers a useful means of characterizing glacial sediments for purposes of lithostratigraphic correlation and provenance indication and that the magnetic data are of a comparable quality to those obtained from standard applications of the more traditional techniques. The heavy mineral and XRD data indicate that little post-depositional chemical alteration of the detrital composition of the sediments has taken place. The mineral magnetic, heavy mineral and XRF analysis suggests both similar lithostratigraphic relationships between the various diamicton units and consistent indications of their likely provenance. These are consistent with published, field-based, stratigraphic relationships of the same sediments and ice-flow directions in the Irish Sea Basin during the Devensian.  相似文献   

10.
Synchrotron radiation offers several advantages over the conventional X-ray sources, among which the most important are its high intensity, broad spectral range and natural collimation. Among the numerous techniques which have been recently developed we present a review of the results concerning more specifically mineralogical systems: X-ray absorption spectroscopy concerning high-resolution edge spectra and Extended X-ray absorption fine structure (EXAFS), X-ray diffraction under high P-high T conditions, small-angle scattering, X-ray microanalysis and X-ray topography. For each technique the basic principles are described together with the experimental devices used, before mineralogical examples are given. Two main applications may be pointed out: chemical and structural characterization of disordered systems and kinetic studies (phase transitions and evolution). Many other techniques (photoelectron spectroscopy, X-ray fluorescence analysis ...) which are actually under development as a result of the rapid increase of the use of storage rings are not covered in the present review but will possibly also be used in the near future in Earth Sciences.  相似文献   

11.
As- and Mo- bearing secondary mineral phases formed during the neutralization of uranium mill wastes require characterization. Previous studies indicate that arsenate and molybdate adsorbed to ferrihydrite are the dominant controls in the tailings materials. A lab-scale plant was employed to characterize secondary precipitates from a variety of ore blends. Through total elemental analysis of precipitates and As and Mo K-edge X-ray absorption spectroscopy, different ratios of contributing phases were determined for each pH stage (4.2, 6.5, and 9.2) of the neutralization process. Overall, arsenate adsorbed to ferrihydrite was the dominant As mineral phase regardless of pH or sample blend (53–77%), with fractional contribution from ferric arsenates, and adsorption to aluminum phases. Molybdate adsorbed to ferrihydrite was the dominant Mo mineral phase, with fractional contribution decreasing with increasing pH (100–69%). The characterization of these phases in the secondary precipitates provides further understanding of the contributing mineral species in tailing facilities.  相似文献   

12.
利用外束质子激发X荧光技术(PIXE)、X射线衍射(XRD)、激光Raman光谱(Raman)以及扫描电子显微镜(SEM)等技术对辽宁岫岩玉进行岩石矿物学分析。实验结果表明岫岩玉矿相以叶蛇纹石为主,各种微量元素含量很低。岫岩玉Raman光谱的主要特征峰位于231、378、684、1048、1368和1397cm-1处。PIXE、XRD和Raman光谱技术作为无损分析方法为鉴定岫岩玉提供了一种快速有效的方法,为研究贵重的古玉器提供了技术支持。  相似文献   

13.
伍超群 《岩矿测试》1994,13(1):45-48
文章简述了电子探针分析的原理,并以湖南宝山西铅锌银矿床为例在研究Pb,Zn,Ag的赋存状态的基础上,着重探讨了电子探针在矿物命名,矿物形貌特征和组成元素的赋存状态等工艺矿物学方面的应用。  相似文献   

14.
Partitioning behavior of Sc, Ti, V, Mn, Sr, Y, Zr, Nb, Ba, La, Nd, Sm, Eu, Gd, Dy, Ho, Yb, Hf, and Pb between dacitic silicate melt and clinopyroxene, orthopyroxene, and plagioclase has been determined based on laser ablation-inductively coupled plasma mass spectrometric (LA-ICPMS) analysis of melt inclusions and the immediately adjacent host mineral. Samples from the 1988 eruption of White Island, New Zealand were selected because petrographic evidence suggests that all three mineral phases are in equilibrium with each other and with the melt inclusions. All three phenocryst types are found as mineral inclusions within each of the other phases, and mineral inclusions often coexist with melt inclusions in growth-zone assemblages. Compositions of melt inclusions do not vary between the different host minerals, suggesting that boundary layer processes did not affect compositions of melt inclusions and that post-trapping modifications have not occurred.Partition coefficients were calculated from the host and melt inclusion compositions and results were compared to published values. All trace elements examined in this study except Sr are incompatible in plagioclase, and all measured trace elements except for Mn are incompatible in orthopyroxene. In clinopyroxene, Sc, V, and Mn are compatible, and Y, Ti, HREE, and the MREE are only slightly incompatible. Most partition coefficients overlap the wide range of values reported in the literature, but the White Island data are consistently at the lower end of the range in published values. Results from the literature obtained using modern microanalytical techniques such as secondary ion mass spectrometry (SIMS) or proton induced X-ray emission spectroscopy (PIXE) also fall at the lower end of the published values, whereas partition coefficients determined from bulk analysis of glass and crystals separated from volcanic rocks typically extend to higher values. Rapid crystal growth-rates, crystal zonation, or the presence of accessory mineral inclusions in phenocrysts likely accounts for the wide range and generally higher partition coefficients obtained using bulk sampling techniques. The results for 3+ cations from this study are consistent with theoretical predictions based on a lattice strain model for site occupancy. The results also confirm that the melt inclusion-mineral (MIM) technique is a reliable method for determining partition coefficients, as long as the melt inclusions have not experienced post-entrapment reequilibration.  相似文献   

15.
矿物包裹体的化学成分研究在地质学、矿床学和油气勘探等方面具有重要意义。目前对包裹体化学成分分析的主要分析方法有激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)、电子探针(EPMA)、显微激光拉曼光谱(LRS)、傅里叶变换红外光谱(FTIR)、质子诱发X射线光谱分析(PIXE)、同步辐射X射线荧光光谱(SXRF)和(传统的)二次离子质谱分析(SIMS)等。本文在对上述方法的分析特点进行简单介绍的基础上,重点阐述了对于矿床学样品表征具有广泛应用潜力的飞行时间二次离子质谱(TOF-SIMS)的原理、特点和技术优势,总结了国内外学者应用TOF-SIMS对矿物包裹体化学成分分析的研究进展与存在问题,并做了相关领域的展望。  相似文献   

16.
Lai  Zhengshou  Chen  Qiushi 《Acta Geotechnica》2019,14(1):1-18

X-ray computed tomography (CT) has emerged as the most prevalent technique to obtain three-dimensional morphological information of granular geomaterials. A key challenge in using the X-ray CT technique is to faithfully reconstruct particle morphology based on the discretized pixel information of CT images. In this work, a novel framework based on the machine learning technique and the level set method is proposed to segment CT images and reconstruct particles of granular geomaterials. Within this framework, a feature-based machine learning technique termed Trainable Weka Segmentation is utilized for CT image segmentation, i.e., to classify material phases and to segregate particles in contact. This is a fundamentally different approach in that it predicts segmentation results based on a trained classifier model that implicitly includes image features and regression functions. Subsequently, an edge-based level set method is applied to approach an accurate characterization of the particle shape. The proposed framework is applied to reconstruct three-dimensional realistic particle shapes of the Mojave Mars Simulant. Quantitative accuracy analysis shows that the proposed framework exhibits superior performance over the conventional watershed-based method in terms of both the pixel-based classification accuracy and the particle-based segmentation accuracy. Using the reconstructed realistic particles, the particle-size distribution is obtained and validated against experiment sieve analysis. Quantitative morphology analysis is also performed, showing promising potentials of the proposed framework in characterizing granular geomaterials.

  相似文献   

17.
泰思肯集成矿物分析仪(TESCAN Integrated Mineral Analyzer,简称TIMA)是基于扫描电子显微镜、加载多个X射线能谱仪和其他探测器、自动识别矿物并成像的分析系统。TIMA已广泛应用到岩石学、矿物学、地球化学、石油、古生物等地球科学领域中,特别是在针对矿物成分和结构复杂、粒径细小的地质样品以及数量大且样品重复性高的实验需求时,它具备分析快速并且能获得统计学数据的优势。为了达到分析测试目的,同时节约成本,选择最佳的实验条件至关重要,但相关研究往往被忽视。因此,本文以陕西省略阳县铧厂沟金矿床中的含金矿化黄铁绢英岩样品为例,使用TIMA在不同扫描模式和分析类型以及多种实验参数设置条件下,对样品进行了分析测试,比较了测试结果的矿物相组成数据、小区域矿物相图和元素分布图的图像质量以及矿物颗粒粒径等统计数据。研究结果表明,影响TIMA分析质量的主要因素为背散射像素间距、能谱测试点间距以及X射线采集计数;实验条件的选择主要取决于样品的矿物成分、粒径和测试分析的目的。  相似文献   

18.
含气页岩受力后裂隙扩展分布方式与矿物之间的关系研究对页岩气勘探开采具有重要指示意义,但受制于前期仪器设备水平的不足,目前相关研究较少。本文以四川盆地志留纪龙马溪组页岩为例,分别选择三轴压缩试验前后的天然样和压缩样进行氩离子抛光,借助高性能场扫描电镜和能谱仪进行矿物晶体和微纳尺度的裂纹观察(分别设定扫描电镜像素大小10 nm和1 μm,观察面积设为1 mm),结合空间统计分析技术,进行三轴压缩试验前后含气页岩微纳尺度裂隙空间分布特征及其与矿物组成的相关关系进行分析研究。研究表明,三轴压缩试验前后,样品内微纳尺度裂隙的空间分布均符合幂律分布,具有一定的自仿射性和层次结构性。但是不同矿物(石英、长石、碳酸盐、黏土等)在受压前后产生的微观裂隙分布特征值(D、logC)变化方式存在显著差异,反映了不同矿物的力学响应特征和机制的不同以及不同矿物对页岩压裂造缝的贡献作用的不同。脆性矿物中的长石、碳酸盐矿物组成以及脆性矿物与黏土矿物的相互作用可能对页岩缝网改造中起着较为重要的作用。不同矿物压缩前后的破坏模式总体存在从张性破坏到剪性破坏的转变过程,然而不同矿物类型在压缩前后裂隙展布形态特征及力学机制有很大不同,特别是碳酸盐类和黏土类矿物变化最为显著,容易形成较复杂的缝网,并存在复杂应力状态主导的多种不同力学机制裂纹共存的现象,在研究时需要考虑页岩复杂矿物构成和结构导致的破裂过程的不确定性等因素。  相似文献   

19.
针对市场上出现的一种外观酷似翡翠的透辉石微晶玻璃,利用常规宝石学检测仪器、X射线粉末衍射和红外光谱等测试方法,对该材料样品的宝石学特征、物相组成及谱学特征进行了初步研究。结果显示,在宝石显微镜下透辉石微晶玻璃显示特征的放射状晶花,具球晶结构;X射线粉末衍射分析表明,其主要物相为透辉石和玻璃质;红外光谱分析显示,该样品的谱学特征与翡翠的红外光谱有较大的差异。  相似文献   

20.
A new and accurate characterization method for dimensions, shape and roughness of aggregate particles has been developed. The method is based on the 3D-laser scanning technique and evaluation of coarse-grain aggregate-particle images. Parameters are obtained with either analytical Fourier analysis or geometrical analysis. The results from the two methods are compared with each other as well as with manual measurements. Although the Fourier-based analysis gives about 10% smaller size values, the comparison of the results shows, in general, a good agreement between the different techniques. This new method for analysis of coarse-grain aggregates gives reliable results for both the shape and topographical parameters of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号