首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-thinned samples of augite from four plutonic igneous rocks have been examined in the electron microscope at 100 kV. Lamellae less than 0.08 m thick were observed parallel to (010) in all four samples. Electron diffraction shows that the lamellae consist of clino-amphibole, space group I2/m, with crystallographic axes parallel to those of the augite. Analytical electron microscopy of the lamellae in one specimen shows that they are a hornblende. The amphibole lamellae have nucleated at the interface between the augite host and exsolution lamellae of orthopyroxene parallel to (100) of the augite. The interface between the amphibole lamellae and the augite is coherent.It is thought that the amphibole lamellae have formed by exsolution from the augite, implying the existence of finite solid solution between members of the pyroxene and amphibole groups of minerals.  相似文献   

2.
Transmission and analytical electron microscopy has been used to study relicts of augite that occur in various stages of transformation to sodic pyroxene. The augite relicts are characterized by a hatching produced by two sets of former 001 exsolution lamellae that possess high dislocation densities and were altered completely to sodic pyroxene, even where the augite matrix is still fresh. With further alteration, the sodic pyroxene in these 001 lamellae recrystallized and grew into the augite matrix, resulting in irregular lamellae that consist of subgrains having low dislocation densities. Needles and thin (100) lamellae of sodic pyroxene developed on the 001 lamellae. Alteration of the augite matrix proceeded by growth of areas with defects (dislocations, stacking faults). All sodic pyroxenes in these microstructures have the same orientation as the precursor augite, indicating a topotactic reaction mechanism. The reactions occurred at roughly constant Si and mainly involved replacement of Ca and Mg by Na and Al. Dislocations may have played a prominent role in the transformation by acting as diffusion pathways and by migrating into untransformed augite, leaving sodic pyroxene in their wake. At the grain boundaries of the augite, discrete grains of sodic pyroxene formed without any fixed orientation relation with the augite, consistent with a non-topotactic reaction. The predominance of the topotactic reaction inside the augite over the non-topotactic grain-boundary reaction is attributed to the scarcity of fluids during eclogite metamorphism.  相似文献   

3.
Electron-microprobe analyses of coexisting Ca-rich and Ca-poor pyroxenes from rocks of the Skaergaard intrusion indicate that their compositional relationships are controlled by two types of tie-line in the pyroxene quadrilateral. Solidus tie-lines join bulk compositions of pairs of pyroxenes that crystallized contemporaneously from a melt at equilibrium. Subsolidus tie-lines join the compositions of lamellae and host materials in pyroxene exsolution intergrowths. The solidus tie-line for a pair of pyroxenes in a specimen and their subsolidus tie-lines do not coincide and the subsolidus tie-line for inverted pigeonite is further from the hedenbergite-ferrosilite join of the quadrilateral than that for augite.The orientation of solidus tie-lines within the pyroxene quadrilateral indicates that during the simultaneous crystallization of two pyroxenes from the Skaergaard magma there was similar partitioning of Mg and Fe in the two phases relative to the melt. The relationship of the subsolidus tie-lines of a pair of coexisting pyroxenes to their solidus tie-line indicates that during the formation of exsolution intergrowths, changes in the composition of the pyroxene matrix involved primarily a change in its CaMg+Fe ratio while those of the lamellae involved both a change in their CaMg+Fe ratio and in their MgFe ratio. The MgFe ratio of the augite lamellae in inverted pigeonite progressively increased with cooling while that of the Ca-poor lamellae in augite progressively decreased with cooling.  相似文献   

4.
Fine textures of exsolution lamellae and interface boundaries between augite and pigeonite in augite crystals from Skaergaard ferrogabbro 4430 have been studied by high resolution electron microscopy and X-ray methods. Thick pigeonite lamellae have higher densities of (100) stacking faults than thin lamellae. The displacement vector of the faults has been determined as 5/6c from the measured density of faults and the relative rotation of the augite and pigeonite lattices. The augite and pigeonite lattices are apparently coherent, and no growth ledges were observed at the interfaces. The stacking faults are often combined with the antiphase boundary of pigeonite resulting in a total displacement vector of 1/2(a+b)+5/6c. The observation of thick and thin pigeonite lamellae indicated that the thickening of (001) pigeonite lamellae was controlled by coherency strains accumulated at the interfaces between augite and pigeonite.  相似文献   

5.
Diffuse streaks in diffraction patterns of synthetic pyroxene single crystals at elevated temperatures are used to determine which reactions are initiated and how they proceed. The samples investigated are a) a host orthopyroxene (Wo4En83Fs13) containing oriented pigeonite (Wo6En78Fs16) parallel to (100) and b) a pigeonite (Wo8En75Fs17). The maximum temperatures were 820° C and 1,015° C, respectively. No partial melting occurs at these temperatures, all reactions are in the subsolidus. In case a) augite is formed parallel to the (001) plane of pigeonite, but the augite is not exsolved by the pigeonite. This is proved by the absence of the obligatory streaks between corresponding reflections in highly resolved precession photographs. Instead, there are streaks from augite to the corresponding reflections of the host orthopyroxene. Example b) demonstrates that the temperature of the high-low transformation of pigeonite is very sensitive to the Ca content and clearly depends on the exsolution of augite. This augite is oriented parallel to (100) of pigeonite, not to (001). Both the high and the low pigeonite are present over a range of ~150° C, while the exsolution of augite continues. Simultaneously, orthopyroxene is also formed sharing (100) of pigeonite. There seems to be an indication that only low pigeonite inverts to orthopyroxene.  相似文献   

6.
Optically homogeneous augite xenocrysts, closely associated with spinel–peridotite nodules, occur in alkali basalts from Hannuoba (Hebei province, China). They were studied by electron and X-ray diffraction to define the occurrence and significance of pigeonite exsolution microtextures. Sub-calcic augite (Wo34) exsolved into En62–62Fs25–21Wo13–17 pigeonite and En46–45Fs14–14Wo40–42 augite, as revealed by TEM through diffuse coarser (001) lamellae (100–300 Å) and only incipient (100) thinner ones (<70 Å). C2/c augite and P21/c pigeonite lattices, measured by CCD-XRD, relate through a(Aug)?a(Pgt), b(Aug)?b(Pgt), c(Aug)≠c(Pgt) [5.278(1) vs 5.189(1)Å] and β(Aug)≠β(Pgt) [106.55(1) vs 108.55(2)°]. Cell and site volumes strongly support the hypothesis that the augite xenocrysts crystallised at mantle depth from alkaline melts. After the augite xenocrysts entered the magma, (001) lamellae first formed by spinodal decomposition at a Tmin of about 1,100 °C, and coarsened during very rapid transport to the surface; in a later phase, possibly on cooling, incipient (100) lamellae then formed.  相似文献   

7.
本文用电子背散射衍射技术(electron backscatter diffraction,EBSD)测试了海南文昌玄武岩中二辉橄榄岩包体中的辉石主晶与其出溶片晶的结晶学取向关系。结合电子探针成分测试,得出:单斜辉石(透辉石)主晶中出溶了两组不同方向的片晶,一组为斜方辉石(顽火辉石-易变辉石)片晶,另一组为单斜辉石(普通辉石)片晶。由于出溶片晶在EBSD测试切面上体现为以线状体,因此需要找到一种方法将线状体所代表的片晶的晶面符号推算出来。本文介绍了一种利用吴氏网进行坐标系旋转的"晶带相交法",该方法可以作图推算出溶片晶的晶面符号。根据"晶带相交法"得出,斜方辉石(顽火辉石-易变辉石)出溶片晶为(100),单斜辉石(普通辉石)出溶片晶为~(401)。根据前人的研究资料,出溶片晶~(401)可能指示最小出溶压力为9.5~12.5GPa。出溶片晶的结晶学取向涉及到主晶与出溶体的晶体结构匹配关系,并且与出溶温度-压力有关,因此出溶片晶的结晶学取向分析具有晶体化学理论意义和反映地质温压过程的实际意义。这种"晶带相交法"可以推广应用于其他矿物出溶结构的结晶学取向研究中。  相似文献   

8.
Four different types of pyroxene found in a Beaver Bay ferrogabbro were analysed by microprobe. The crystallization sequence of pyroxene is augite-ferroaugite with exsolution lamellae of Ca-poor clinopyroxene → ferropigeonite with exsolution lamellae of augite → ferrohypersthene without exsolution lamellae+augite and ferroaugite without exsolution lamellae. The core of augite-ferroaugite with exsolution lamellae is cumulus pyroxene, whereas others, including the margin of augite-ferroaugite with lamellae, are interpreted to have crystallized from the intercumulus liquid. The sequence of crystallization of minerals from intercumulus liquid is different from that of minerals which have accumulated successively to the bottom and which were related to the fractionation of the whole layered series. The difference may be attributed to the different oxidation state of crystallization.  相似文献   

9.
The exsolution phenomena of augite from Ferrogabbro 4430 of the Skaergaard Intrusion were examined in detail by single crystal X-ray diffraction and heating experiments to study the stepwise exsolution process. In the augite crystals, five different phases were detected: pigeonite (001), pigeonite (100), orthopyroxene (a), orthopyroxene (p) and a small amount of clinoamphibole. The two different pigeonites nearly share the corresponding (001) and (100) planes with the host. Orthopyroxene (a) and orthopyroxene (p) have (100) in common with the host and with exsolved pigeonite (001), respectively. Clinoamphibole was observed in the form of rather weak reflections in many crystals. It has (010) in common with the host.A large number of augite crystals exhibited a pigeonite (001) phase with curved, rotated reflections and diffuse streaks along the a* direction in (h0l) precession photographs. It appears that these streaks are related to orthopyroxene (p). Orthopyroxene (p) seems to be crystallized from pigeonite (001) by nucleation at (100) stacking fault planes (inverted pigeonite). Pigeonite (100) may be formed at growth ledges between augite host and exsolved orthopyroxene (a) at a later stage of exsolution to stabilize the boundaries.From the X-ray diffraction profiles and the results of the heating experiments, a possible exsolution sequence is suggested. Clinoamphibole appears to be a product of alteration at the latest stage of the exsolution process. It seems to be related to particular conditions of partial water pressure.  相似文献   

10.
Anorthosites, mangerites and charnockites from metamorphosed anorthosite massifs (the Adirondacks and elsewhere) commonly contain coarsely exsolved pyroxenes with substantial amounts of exsolved orthopyroxene (in clinopyroxene) and clinopyroxene (in orthopyroxene). Electron microprobe reintegration of such pyroxenes yields compositions which indicate that pigeonite and subcalcic augite coexisted before metamorphic reequilibration. Equilibration temperatures of 1100 °±100 °C for anorthosite and 1000 °C±100 °C for mangerites and charnockites are inferred from the solvus of Ross and Huebner (1975). These temperatures constrain minimum magmatic thermal conditions and suggest that the magmas were relatively dry. Exsolution lamellae of coarse pyroxenes and small equant coexisting pyroxenes (with little or no exsolution) yield temperatures of 750 °C, consistent with equilibration during granulite facies metamorphism. Relict igneous textures and compositions persisted through the metamorphic event due to dry P(H2O) P(solid) metamorphic conditions. The reintegrated pyroxene compositions provide a window through the metamorphism and yield constraints on the pre-metamorphic igneous events.Contribution No. 340 from the Mineralogical Laboratory, Department of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan, 48109, U.S.A.  相似文献   

11.
As a first step towards accurate quantification of the polysomatic states of biopyriboles, we have studied the polysomatic transformation between amphibole and hydrous triple-chain silicate (TCS) in the synthetic system Na2O-MgO-SiO2-H2O (NMSH). The reaction is: 4Na2Mg4Si6O16(OH)2 TCS 3Na2.67Mg5.33Si8O21.33(OH)2.67. Amphibole We have characterised a polysomatic intergrowth of amphibole and TCS (synthesized at 2 kbar/(653° C) by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), infrared spectroscopy and 29Si magic-angle-spinning (MAS) NMR spectroscopy. The sample is a fine-scale lamellar intergrowth of double- and triple-chain structures; lamellae are 27 Å to hundreds of Ångströms wide. The 29Si MAS NMR spectrum of the intergrowth is explicitly a superposition of the individual amphibole and TCS spectra. By ensuring that the recycle delay time used considers the longest spin-lattice relaxation time (ca. 900 s), the relative amounts of double- and triple-chain structures can be quantified by simple deconvolution of the spectrum. The relative amounts of double- and triple-chain structures are 42 ± 5 and 58 ± 5 mol%, respectively. With regard to quantifying populations of chain multiplicities in biopyriboles, we believe that 29Si NMR is more accurate than the conventional HRTEM fringe-counting method (Maresch and Czank 1983, 1988), and is far superior to XRD and infrared spectroscopy, which suffer from high sensitivity to particle size and calibration problems. 29Si MAS NMR can provide an accurate means of monitoring the progress of polysomatic reactions in biopyriboles. It is likely to be most effective for samples containing only a few different chain multiplicities (e.g. m = 1, 2, 3 and perhaps 4), such as occur in natural pyroxenes and amphiboles.  相似文献   

12.
OTTEN  MAX T. 《Journal of Petrology》1985,26(2):488-514
A transmission electron microscope study of the microstructuresof olivine, augite and ortho-pyroxene in the Artfj?llet gabbroshows that the gabbro has been affected by two phases of deformation,exsolution and alteration. During the first phase, deformationand annealing of olivine led to the formation of elongated subgrains,with (100) subgrain boundaries consisting of regularly spacededge dislocations with [100] Burgers vectors. Localized strongerdeformation resulted in the development of mosaic subgrainswith (100) and (001) boundaries. Exsolution produced blebs and(100) lamellae of orthopyroxene in augite. Two types of blebsoccur, referred to as symplectitic augite and blebby augite.Symplectitic augite formed through discontinuous precipitation.The blebs in blebby augite are considered to have nucleatedat subgrain boundaries or dislocations in the augite. Blebs,melon pips and (100) lamellae of augite formed in orthopyroxene.These blebs and melon pips are thought to be due to nucleationat dislocations or to thickening of (100) lamellae at dislocations.Brown hornblende formed as blebs in augite and to a lesser extentorthopyroxene. This first event took place while the gabbrowas at a temperature of c. 900-1000 ?C and is thought to berelated to D2b, a regional flattening and thrusting event. Renewed exsolution in the pyroxenes occurred later, probablybefore the second subsolidus phase, -but its timing is poorlyconstrained. "100" lamellae of low-Ca clinopyroxene formed inaugite at an estimated temperature of c. 600 ?C. Thin (100)lamellae and Guinier-Preston zones were developed in orthopyroxene. During the second phase, deformation resulted mainly in cracks,along which hydrous fluids entered the gabbro, causing a variabledegree of metamorphism at a temperature of c. 500-550 ?C. Inolivine irregular dislocations of mixed edge-screw characterformed. Cr-spinel with an unknown phase, or magnetite with diopsideprecipitated in the olivine. Oxide minerals formed in the pyroxenesand brown hornblende: Cr-spinel in Cr-rich augite; rutile andilmenite in other augite, orthopyroxene and brown hornblende.The formation of these oxide minerals is thought to be due toexsolution of cations such as Ti and Cr, which these mineralsdo not tolerate in their structures at low temperatures, combinedwith oxidation in the case of magnetite in olivine. Alterationresulted in thin amphibole lamellae parallel to (010) in augite.This second subsolidus phase is correlated with the D3 regionaldeformation phase and the concomitant retrograde metamorphism.  相似文献   

13.
Amphiboles and pyroxenes occurring in the Salton Sea Geothermal Field were found to contain coherent intergrowths of chain silicates with other than double and single chain widths by using transmission and analytical electron microscopy. Both occur in the biotite zone at the temperature (depth) interval of 310° C (1,060 m) to 330° C (1,547m) which approximately corresponds to temperatures of the greenschist facies. The amphiboles occur as euhedral fibrous crystals occupying void space and are composed primarily of irregularly alternating (010) slabs of double or triple chains, with rare quadruple and quintuple chains. Primary crystallization from solution results in euhedral crystals. Clinopyroxenes formed mainly as a porefilling cement and subordinately as prismatic crystals coexisting with fibrous amphiboles. Fine lamellae of double and triple chains are irregularly intercalated with pyroxene. AEM analyses yield formulae (Ca1.8Mg2.9Fe1.9Mn0.1) Si8O21.8(OH)1.8 (310° C) and (Ca2.0Fe2.5Mg2.3) Si8O21.8 (OH)2.0 (330° C) for amphiboles and (Ca1.1Fe0.6Mg0.3) Si2O6 for clinopyroxene. Thermodynamic calculations at Pfluid=100 bar of equilibrium reactions of (1) 3 chlorite +10 calcite + 21 quartz = 3 actinolite + 2 clinozoisite + 8 H2O + 10 CO2 and (2) actinolite+ 3 calcite+ 2 quartz = 5 clinopyroxene + H2O + 3 CO2 using Mg-end member phases indicate that formation of amphibole and pyroxene require very water-rich conditions at temperatures below 330° C.Contribution No. 420 from the Mineralogical Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan  相似文献   

14.
Diopside twins mechanically on two planes, (100) and (001), and the associated macroscopic twinning strains are identical (Raleigh and Talbot, 1967). An analysis based on crystal structural arguments predicts that both twin mechanisms involve shearing of the (100) octahedral layers (containing Ca2+, Mg2+ and Fe2+ ions) by a magnitude of c/2. Small adjustments or shuffles occur in the adjacent layers containing the [SiO4]4? tetrahedral chains. While the (100) twins are conventional with shear parallel to the composition plane, this analysis predicts that (001) twins form by a mechanism closely related to kinking. A polycrystalline diopside specimen was compressed 8% at a temperature of 400° C, a pressure of 16 kilobars, and a compressive strain rate of about 10?4/s. Transmission electron microscopy on this specimen has revealed four basic lamellar features:
  1. (100) mechanical twin lamellae;
  2. (100) glide bands containing unit dislocations;
  3. (001) twin lamellae;
  4. (101) lamellar features, not as yet identified.
The (001) twins often contain remnant (100) lamellae of untwinned host. Twinning dislocations occur in these (100) lamellae and in the (001) twin boundaries with very high densities. Diffraction contrast experiments indicate that the twinning dislocations associated with both twin laws glide on (100) with Burgers vector b=X [001] where X is probably equal to 1/2 on the basis of the structural analysis. Parallels are drawn between mechanical twinning in clinopyroxenes and clinoamphiboles. The exclusive natural occurrence of basal twins in shock-loaded clinopyroxenes and of analogous ( \(\bar 1\) 01) twins in clinoamphiboles is given a simple explanation in terms of the relative difficulty of the “kinking” mechanism as compared to direct glide parallel to the composition plane.  相似文献   

15.
The hydroxy groups of the crystal lattice of dioctahedral 2:1 phyllosilicates were investigated by means of quantum-mechanical calculation. The standard Kohn-Sham self-consistent density functional theory (DFT) method was applied using the generalized gradient approximation (GGA) with numerical atomic orbitals and double-zeta polarized functions as basis set. Isomorphous cation substitution of different cations in the octahedral and tetrahedral sheet was included along with several interlayer cations reproducing experimental crystal lattice parameters. The effect of these substitutions and the interlayer charge on the hydroxyl group properties was also studied. These structures represent different cation pairs among Al3+, Fe3+ and Mg2+ in the octahedral sheet of clays joined to OH groups. The geometrical disposition of the OH bond in the crystal lattice and the hydrogen bonds and other electrostatic interactions of this group were analyzed. The frequencies of different vibrational modes of the OH group [(OH), (OH) and (OH)] were calculated and compared with experimental data, finding a good agreement. These frequencies depend significantly on the nature of cations which are joined with, and the electrostatic interactions with, the interlayer cations. Besides, hydrogen-bonding interactions with tetrahedral oxygens are important for the vibrational properties of the OH groups; however, also the electrostatic interactions of these OH groups with the rest of tetrahedral oxygens within the tetrahedral cavity should be taken into account. The cation substitution effect on the vibration modes of the OH groups was analyzed reproducing the experimental behaviour.Dr. V. Botella passed away last February  相似文献   

16.
Pyroxenes from our sample of Luna 20 soil are predominantly orthopyroxene with subordinate pigeonite. The orthopyroxenes are chromium-rich bronzites and contain submicroscopic lamellae of augite in a twinned orientation exsolved on (100). These lamellae have a composition close to the diopside-hedenbergite join. Asymmetric diffuse streaks parallel to a1 indicate stacking faults parallel to (100) and possibly very thin (10–20 Å) lamellae of clinobronzite parallel to (100). Pigeonite crystals are very complex crystallographically and chemically, with optically visible (001) augite exsolution lamellae and two sets of chromite exsolution lamellae. In addition, there are submicroscopic (100) augite lamellae and a second generation of clinohypersthene lamellae which appear to have exsolved from the (001) augite lamellae. The clinohypersthene host, which has a large number of stacking faults parallel to (100), has partially inverted to hypersthene of the same composition. The hypersthene occurs as very fine lamellae (less than 1000 Å) parallel to the (100) plane of the clinohypersthene. XDFe-Mg values for five host-lamellae pairs in pigeonite K-4 indicate a significant amount of subsolidus readjustment. We tentatively conclude that many of the bronzite and pigeonite crystals were derived from rocks crystallized from a high level magma chamber in the lunar highland crust.  相似文献   

17.
Xenoliths of coarse-grained spinel-clinopyroxenite up to 15 cm in size occur in tuff in an isolated Permian vent on the Caithness coast at Duncansby Ness. Highly altered fragments of chrome-spinel lherzolite and wehrlite are also found in the tuff and in a body of monchiquite within the vent. The spinel-clinopyroxenites consist of aluminous augite and aluminous pleonaste spinel (FeO/MgO = 0.9) and their texture suggests the spinel to have exsolved from the augite. Experiments on representative natural xenolith compositions at 18 kb (dry) indicate that all the spinel in the estimated average bulk composition (Sp4.9Px95.1) could have exsolved from an original homogeneous pyroxene. Initial fractionation of such a pyroxene from an alkali basaltic magma at P≥18 kb, 1450-1350 °C, would be followed by spinel exsolution at T< 1290 ° C. A similar origin by fractionation of a highly aluminous augite (± aluminous spinel) at high pressure, with subsequent spinel exsolution is proposed for spinel-clinopyroxenites from alkali basalts elsewhere in the world. The similarity of these xenoliths suggests that such a process may form an important stage in the evolution of some undersaturated basaltic rocks.  相似文献   

18.
Samples of a garnet granulite from the mafic border units of the Lake Chatuge, Georgia alpine peridotite body were found to contain lamellar intergrowths of a pargastic amphibole in augite having the typical appearance of an exsolution feature. Single crystal X-ray diffraction, optical, electron microprobe and conventional and analytical electron microscopic studies have provided data limiting the compositions and structures of the coexisting phases. Individual lamellae of both materials are from 0.5 to 2.0 m in width with the lamellar interface parallel to {0 1 0}. The formulae of the minerals, as determined by a combination of electron microprobe and analytical electron microscopy, are (Na0.1Ca1.0Mg0.6Fe3+ 0.3)(Si1.8Al0.2)O6 for the pyroxene and Na0.7Ca1.9(Mg2.1Fe2+ 1.4Fe3+ 0.5Ti0.1Cr0.1Al0.8)(Si5.9Al2.1) O22(OH)2 for the amphibole. Several other studies have described intergrowths similar to those observed in this work, in general favoring exsolution as the formation mechanism for the intergrowths. In the Lake Chatuge samples however, replacement of pyroxene by amphibole is in part indicated by continuous gradation of amphibole lamellae into amphiboles rimming the clinopyroxenes.Contribution No. 368 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan  相似文献   

19.
Antiphase domains (APD's) of pigeonite lamellae in natural and heated augite crystals from the Hakonetoge andesite have been examined by a transmission electron microscope (TEM). Antiphase boundaries (APB's) of the pigeonite lamellae in natural specimens have a sigmoidal shape cutting the c axis in (010) sections. APB's in specimens heated at temperatures above the high-low inversion and then quenched are nearly parallel to the c axis with almost straight boundaries. These observations indicate that the preferred orientation of APB's in (010) sections depends on cooling rate; at fast colling rates the APB's are nearly parallel to the c axis, whereas at slower cooling rates they are inclined to the c axis. The cooling rate of the natural augite specimen from Hakonetoge is estimated to be about 0.01 °C/h from the experimentally determined time-temperature-transformation (TTT) diagram for the APB orientations. APD sizes are large in specimens quenched from above the inversion temperature; they are at a minimum after cooling rates of around 1–0.1 °C/h, and then become larger with slower cooling rates.  相似文献   

20.
The crystal structure of a synthetic CaFe3+Al-SiO6 pyroxene (20 kb, 1,375° C) with unit cell dimensions a=9.7797(16), b=8.7819(14), c=5.3685(5) Å, =105.78(1), space group C2/c has been refined by the method of least squares to an R-factor of 0.025 based on 812 reflections measured on an automatic single crystal diffractometer. The octahedral M1 site is occupied by 0.82 Fe3+ and 0.18 Al3+. Within the tetrahedral T site, Si4+ (0.50), Al3+ (0.41) and Fe3+ (0.09) ions are completely disordered, although submicroscopic domains with short-range order are very likely. The octahedral site preference energy of the Fe3+ ions with respect to Al3+ ions in CaFe3+AlSiO6 is about 10 kcal/mole, which is much higher than that found in Y3Al x Fe5–2O12 garnets. Topologically the structure of CaFe3+AlSiO6 is intermediate between that of diopside and calcium Tschermak's pyroxene, CaAlAlSiO6. For CaM3+ AlSiO6 clinopyroxenes an increase in the size of the M1 octahedron is accompanied by an increase in the average M2-0, bridging T-0 and 03-03 distances and kinking of the tetrahedral chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号