共查询到20条相似文献,搜索用时 31 毫秒
1.
R.F. Dymek A.L. Albee A.A. Chodos G.J. Wasserburg 《Geochimica et cosmochimica acta》1976,40(9):1115-1130
Detailed mineralogic and petrographic data are presented for four isotopically-dated basaltic rock fragments separated from the howardite Kapoeta. Clasts C and ρ have been dated at ~4.55 AE and ~ 4.60 AE respectively, and Clast ρ contains 244Pu and 129I decay products. These are both igneous rocks that preserve all the features of their original crystallization from a melt. They thus provide good evidence that the Kapoeta parent body produced basaltic magmas shortly after its formation (< 100 m.y.). Clast A has yielded a Rb-Sr age of ~ 3.89 AE and a similar age. This sample is extensively recrystallized, and we interpret the ages as a time of recrystallization, and not the time of original crystallization from a melt. Clast B has yielded a Rb-Sr age of ~ 3.63 AE, and an age of ? 4.50 AE. This sample is moderately recrystallized, and the Rb-Sr age probably indicates a time of recrystallization, whereas the age more closely approaches the time of crystallization from a melt. Thus, there is no clearcut evidence for ‘young’ magmatism on the Kapoeta parent body.Kapoeta is a ‘regolith’ meteorite, and mineral-chemical and petrographic data were obtained for numerous other rock and mineral fragments in order to characterize the surface and near-surface materials on its parent body. Rock clasts can be grouped into two broad lithologic types on the basis of modal mineralogy—basaltic (pyroxene- and plagioclase-bearing) and pyroxenitic (pyroxenebearing). Variations in the compositions of pyroxenes in rock and mineral clasts are similar to those in terrestrial mafic plutons such as the Skaergaard, and indicate the existence of a continuous range in rock compositions from Mg-rich orthopyroxenites to very iron-rich basalts. The FeO and MnO contents of all pyroxenes in Kapoeta fall near a line with FeO/MnO ~ 35, suggesting that the source rocks are fundamentally related. We interpret these observations to indicate that the Kapoeta meteorite represents the comminuted remains of differentiated igneous complexes together with ‘primary’ undifferentiated basaltic rocks. The presently available isotopic data are compatible with the interpretation that this magmatism is related to primary differentiation of the Kapoeta parent body. In addition, our observations preclude the interpretation that the Kapoeta meteorite is a simple mixture of eucrites and diogenites.The FeO/MnO value in lunar pyroxenes (~60) is distinct from that of the pyroxenes in Kapoeta. Anorthositic rocks were not observed in Kapoeta, suggesting that plagioclase was not important in the evolution of the Kapoeta parent body, in contrast to the Moon. Both objects appear to have originated in chemically-distinct portions of the solar system, and to have undergone differentiation on different time scales involving differing materials. 相似文献
2.
Reconstructions of the early thermal history of the H-chondrite parent body have focused on two competing hypotheses. The first posits an undisturbed thermal evolution in which the degree of metamorphism increases with depth, yielding an “onion-shell” structure. The second posits an early fragmentation-reassembly event that interrupted this orderly cooling process. Here, we test these hypotheses by collecting a large number of previously published closure age and cooling rate data and comparing them to a suite of numerical models of thermal evolution in an idealized parent body. We find that the onion-shell hypothesis, when applied to a parent body of radius 75-130 km with a thermally insulating regolith, is able to explain 20 of the 21 closure age data and 62 of the 71 cooling rates. Furthermore, six of the eight meteorites for which multiple data (at different temperatures) are available, can be accounted for by onion-shell thermal histories. We therefore conclude that no catastrophic disruption of the H-chondrite parent body occurred during its early thermal history. The relatively small number of data not explained by the onion-shell hypothesis may indicate the formation of impact craters on the parent body which, while large enough to excavate all petrologic types, were small enough to leave the parent body largely intact. Impact events fulfilling these requirements would likely have produced transient crater diameters at least 30% of the parent body diameter. 相似文献
3.
C. Nicole Foley M. Wadhwa P.E. Janney T.L. Grove 《Geochimica et cosmochimica acta》2005,69(18):4557-4571
We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that ε182W values in the nakhlites are uniform within analytical uncertainties and have an average value of ∼3. Also, while ε182W values in the shergottites have a limited range (from 0.3-0.7), their ε142Nd values vary considerably (from −0.2-0.9). There appears to be no correlation between ε182W and ε142Nd in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at ∼12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before ∼4542 Ma and the shergottite source reservoirs at 4525 Ma. These ages imply that, within the uncertainties afforded by the 182Hf-182W and 146Sm-142Nd chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct 182W-142Nd isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the 182W-142Nd isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before ∼4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs. 相似文献
4.
Eucrites are extraterrestrial plagioclase-pigeonite basalts. Experimental studies suggest that they were produced by partial melting of an olivine (Fo65)-pigeonite (Wo5En65)-plagioclase (An94)-spinel-metal source region. Quantitative modeling of the evolution of REE abundances in the eucrites indicates that the main group of eucrites (e.g. Juvinas) may be produced by approximately 10% equilibrium partial melting of a source region with initial REE abundances which were chondritic relative and absolute. Other eucrites appear to represent greater (e.g. Sioux County—15%) or smaller (e.g. Stannern—4%) degrees of melting. Moore County and Serra de Magé appear to be cumulates of pyroxene and plagioclase produced by fractional crystallization of a Juvinas-like melt. Nuevo Laredo may represent a residual liquid after such fractional crystallization. Our calculations are consistent with the conclusion that the eucrites were derived from a single type of source region. The close correspondence of the age of the eucrites (? 4.6 AE) to the age of the solar system appears to preclude the possibility of extensive chemical differentiation of the eucrite parent body prior to the event which produced the eucritic melts. Thus our calculations have yielded not only the mode of the source region but, assuming homogeneous accretion, the mode and hence the bulk composition of the eucrite parent body as well. We are unable to estimate quantitatively the ratio of metal to olivine in the parent body. If no metal is present, the bulk composition (in oxide wt%) is Na2O—0.04, MgO—29.7, Al2O3—1.8, SiO2—39.0, CaO—1.2, FeO—28.3. If, in contrast, the parent body contained 30% metal, the bulk composition of the silicate portion of the eucrite parent body is Na2O—0.06, MgO—28.0, Al2O3—2.6, SiO2—41.3, CaO—1.9, FeO—26.3. Relative abundances of the meteorites suggest that the eucrite parent body is still intact. The solar system object most closely resembling the eucrites is asteroid 4 Vesta. Because Vesta is unique among the asteroids, we have license to conclude that it is the source of the eucrites and its bulk composition is close to the analyses given above. 相似文献
5.
U/Pb systematics of the Acapulco meteorite have been determined on phosphate and feldspar separates and on grain size fractions of bulk material. The latter show an enrichment of U and Th with respect to CI chondrites and a low (∼1) Th/U ratio. This is consistent with the model that the majority of U and Th was added early by a low temperature melt to the Acapulco precursor. The feldspar exhibits a Pb isotope composition that is close to the primordial Pb composition. Mineral separates and bulk fractions define a 207Pb/206Pb isochron. The age corresponds to 4555.9 ± 0.6 Ma. This age anchors the thermal evolution of the Acapulco parent body into an absolute time scale. Evaluation of the Hf/W and U/Pb records with the cooling rates deduced from mineralogical investigations confirms the idea that the Acapulco parent body was fragmented during its cooling. The U/Pb system precisely dates this break-up at 4556 ± 1 Ma. 相似文献
6.
138Ce/142Ce and 143Nd/144Nd isotope ratios of lunar samples are determined to constrain the petrogenetic differentiation and evolution of the moon. High-precision Ce-Nd isotope data, well-defined Rb-Sr isochrons, and rare earth elements (REE) abundances of lunar samples show that unexpectedly low La/Ce ratios of evolved lunar highland samples are preserved from at least 3.9 Ga. Precise analysis of REE abundances indicates that the low La/Ce ratio results from a depletion of La relative to other REE. This depletion can be seen in pristine KREEP basalts and Mg-suite rocks from 3.85 to 4.46 Ga. As REE abundances of all these samples are controlled by the presence of a KREEP component, the depletion was probably inherited from a late crystallization sequence of the lunar magma ocean related to the production of the original KREEP component. 相似文献
7.
The metal content of the eucrite parent body: constraints from the partitioning behavior of tungsten
The solid metal/silicate melt partition coefficient for W has been determined experimentally to have a value of 25 ± 5 at 1190°C and an oxygen fugacity of 10?13.4, the temperature and oxygen fugacity conditions at which eucritic basalts formed. Given this partition coefficient, scenarios for the metal content and evolution of the eucrite parent body (EPB) are constructed to explain the reduction by a factor of 30, relative to the chondrites, of the ratio in the eucrites.A possible model for the early geologic history of the EPB begins with accretion of a parent body, chondritic in composition with respect to nonvolatile siderophile and lithophile elements. The solid metal content was between 2% and 10%, which is within the range observed in the ordinary chondrites. Subsequent heating of the EPB caused the metal phase to separate and become isolated from the silicate phases before the degree of partial melting of the silicates reached 4% to 5%. Equilibrium partitioning of most of the W into the solid metal phase at low degrees of partial melting reduced the ratio in the remaining silicates. Continued partial melting of the silicates generated primary eucritic magmas which recorded the reduced ratio. 相似文献
8.
A. Roy A. Sarkar S. Jeyakumar S. K. Aggrawal M. Ebihara H. Satoh 《Journal of Earth System Science》2004,113(4):649-665
Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and
lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered
to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study
indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma,
Sri ∼ 0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest
stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile
elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots
exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; (ΣHREE)N ∼ 2–3 times chondrite, (Gd/Yb)N ∼ 1). The εNd(t) values vary from +1.23 to -3.27 whereas δ18O values vary from +3.16‰ to +5.29‰ (average +3.97‰±0.75‰) which is lighter than the average mantle value. Isotopic, trace
and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised
by the fluid (± silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted,
variable εNd, low Sri(0.702) and low δ18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the
granitic crust which possibly originated due to the same thermal pulse. 相似文献
9.
《International Geology Review》2012,54(4):463-471
Several Pb-Zn deposits and occurrences within Iran are hosted by Mesozoic–Tertiary-aged sedimentary and igneous rocks. This study reports new Pb isotope analyses for galena from 14 Pb-Zn deposits in the Alborz and Central Iran structural zones. In general, Pb isotope ratios are extremely variable with data plotting between the upper crustal and orogenic curves in a plumbotectonic diagram. The latter may be attributed to Pb inputs from crustal and mantle end-members. Most of the galena samples are characterized by high 207Pb/204Pb ratios, suggesting significant input of Pb from old continental crust or pelagic sediment. Pb isotope data also indicate that some of the deposits, which are hosted by sedimentary rocks in Central Iran and Alborz, have similar Pb isotopic compositions and hence suggest similar source regions. Most of the galenas yield Pb model ‘ages’ that vary between ~140 and ~250 Ma, indicating that mineralization resulted from the extraction of ore-bearing fluids from Upper Triassic–Lower Jurassic sequences. The similarity in Pb isotope ratios for the Pb-Zn deposits located within these zones suggests analogous crustal evolution histories. Our preferred interpretation is that Pb-Zn mineralization within the sedimentary and igneous rocks of the Central Iran and Alborz tectonic regions occurred following a Late Cretaceous–Tertiary accretionary stage of crustal thickening in Iran. 相似文献
10.
Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones 总被引:9,自引:0,他引:9
Mineral/melt trace element partition coefficients were determined for rutile (TiO2) for a large number of trace elements (Zr, Hf, Nb, Ta, V, Co, Cu, Zn, Sr, REE, Cr, Sb, W, U, Th). Whilst the high field strength elements (Zr, Hf, Nb, Ta) are compatible in rutile, other studied trace elements are incompatible (Sr, Th, REE). In all experiments we found DTa > DNb, DHf > DZr and DU > DTh. Partition coefficients for some polyvalent elements (Sb, W, and Co) were sensitive to oxygen fugacity. Melt composition exerts a strong influence on HFSE partition coefficients. With increasing polymerization of the melt, rutile/melt partition coefficients for the high field strength elements Zr, Hf, Nb and Ta increase about an order of magnitude. However, DNb/DTa and DHf/DZr are not significantly affected by melt composition. Because DU ? DTh, partial melting of rutile-bearing eclogite in subducted lithosphere may cause excesses of 230Th over 238U in some island arc lavas, whereas dehydration of subducted lithosphere may cause excesses of 238U over 230Th. From our partitioning results we infer partition coefficients for protactinium (Pa) which we predict to be much lower than previously anticipated. Contrary to previous studies, our data imply that rutile should not significantly influence observed 231Pa-235U disequilibria in certain volcanic rocks. 相似文献
11.
12.
First initial-Hf isotopic compositions for samples from the Alpine domain are presented and discussed. The results are mainly based on zircons and a few whole rocks with ages between 30 and 450 Ma. Of those so far analyzed, the present-day Hf isotopic compositions of zircons from non-metamorphic and metamorphic granitoid rocks vary between 0.2824 and 0.2829. Zircon populations with concordant U-Pb ages have much higher initial 176Hf/177Hf than inversely discordant populations which have been contaminated with older zircons containing less radiogenic Hf. Correlated Nd-Hf crustal-residence ages have been found involving model parameters of Hf/Nd=f(Lu/Hf)/f(Sm/Nd) 1.6 for the depleted mantle and f(Lu/Hf)/f(Sm/Nd) 1.2 for elemental fractionations in the crust. The model implies 176Lu/177Hf of 0.017 for the bulk crust. It is suggested that the granitoid rocks are the result of mixing of subcontinental mantle-derived magmas with 1.7 Ga old recycled and partially molten crustal material. The continental/mantle component mass-ratio values for the granitoids range between 0.3 and 2. 相似文献
13.
Audrey Bouvier Lev J. Spivak-Birndorf Gregory A. Brennecka Meenakshi Wadhwa 《Geochimica et cosmochimica acta》2011,75(18):5310-5323
We report elemental abundances and the isotopic systematics of the short-lived 26Al-26Mg (half-life of ∼0.73 Ma) and long-lived U-Pb radiochronometers in the ungrouped basaltic meteorite Northwest Africa (NWA) 2976. The bulk geochemical composition of NWA 2976 is clearly distinct from that of the eucrites and angrites, but shows broad similarities to that of the paired NWA 001 and 2400 ungrouped achondrites indicating that it is likely to also be paired with these two samples. The major and trace element abundances in NWA 2976 further indicate that it formed by extensive melting and magmatic fractionation processes on its parent body. The Al-Mg and Pb-Pb isotope systematics indicate that this meteorite represents the earliest stages of crust formation on a differentiated parent body in the early Solar System. The absolute Pb-Pb internal isochron age of NWA 2976, obtained from acid leaching residues of three whole-rock samples and two pyroxene separates, is 4562.89 ± 0.59 Ma (MSWD = 0.02). This Pb-Pb age is calculated using the measured 238U/235U ratio of a NWA 2976 whole-rock of 137.751 ± 0.018 (2σ) which was determined relative to the recently revised value of 137.840 ± 0.008 for the SRM 950a U isotope standard. The Al-Mg systematics reveal the presence of 26Mg isotopic anomalies produced by the decay of 26Al with an (26Al/27Al)0 of (3.94 ± 0.16) × 10−7, and indicate a time of formation of 0.26 ± 0.18 Ma after the D’Orbigny angrite. Using the revised Pb-Pb age of 4563.36 ± 0.34 Ma for the D’Orbigny anchor (corrected for its U isotopic composition), we deduce an Al-Mg model age of 4563.10 ± 0.38 Ma for NWA 2976, which is consistent with its Pb-Pb internal isochron age.The concordance of the Pb-Pb and Al-Mg chronometers, when taking into account the differences in the U isotopic compositions of the D’Orbigny and NWA 2976 achondrites (whose parent bodies likely formed in distinct regions of early Solar System as indicated by their different oxygen isotopic compositions), implies that 26Al was homogeneously distributed in the early Solar System. It also suggests that igneous processes on planetesimals, as represented by the formation of various basaltic meteorite groups that likely originated on distinct parent bodies (e.g., eucrites and angrites, as well as ungrouped achondrites), were widespread throughout the protoplanetary disk within the first ∼5 Ma of the history of the Solar System. 相似文献
14.
左家庄金矿位于西秦岭凤太盆地西北部,金矿体赋存在印支早期何家庄岩体的东西向剪切破碎带内。矿石类型以石英硫化物脉型为主,与西秦岭地区沉积岩控矿为主的特征有显著的差别。流体包裹体测温及成分分析表明,左家庄金矿成矿流体具有含CO2、中低温(122~305 ℃)、低盐度(1.2%~11.8% NaCleq)、浅成(约2.4 km)热液的特征。H-O同位素组成(δDH2O集中在-88.8‰~-81.1‰;δ18OH2O在-0.4‰~+7.6‰)显示成矿初始流体以变质水为主,随着流体向上运移不排除有岩浆水和大气降水的加入。Pb同位素组成显示成矿物质来源于浅部上地壳及造山带内;S同位素组成集中(11.4‰~13.4‰),与凤太盆地内泥盆系沉积岩控金矿相似,且与全球范围内泥盆系控矿造山型金矿组成吻合,反映出泥盆系地层为成矿提供了硫源;热液期黄铁矿原位微量元素分析显示左家庄金矿成矿流体富集Au、As、Cu、Sb、Ag、Pb、Bi等元素,该元素组合与前人分析凤太盆地内泥盆系地层(尤其是中、上泥盆统界面)富集元素特征一致。上述分析一致表明泥盆系地层是左家庄金矿成矿物质来源理想场所。多元同位素对比分析表明,左家庄金矿与凤太盆地内其他金矿在成矿流体及成矿物质来源上具有统一性,但是在矿化形式上有显著区别,其差异可能与二者赋矿围岩性质不同有关。成矿流体沿断裂向上运移过程中,当遇到上泥盆统渗透性较高的千枚岩时发生水岩反应,形成以微细浸染状矿化为主的金矿;当碰到岩体内脆性剪切破碎带时,由于压力释放,流体沸腾,导致矿质迅速沉淀在张性破碎带内,形成石英硫化物脉型左家庄金矿。通过与典型造山型金矿成矿特征对比分析,认为左家庄金矿可划归为浅成造山型金矿床。 相似文献
15.
We have determined metallographic cooling rates of 9 IVB irons by measuring Ni gradients 3 μm or less in length at kamacite-taenite boundaries with the analytical transmission electron microscope and by comparing these Ni gradients with those derived by modeling kamacite growth. Cooling rates at 600-400 °C vary from 475 K/Myr at the low-Ni end of group IVB to 5000 K/Myr at the high-Ni end. Sizes of high-Ni particles in the cloudy zone microstructure in taenite and the widths of the tetrataenite rims, which both increase with decreasing cooling rate, are inversely correlated with the bulk Ni concentrations of the IVB irons confirming the correlation between cooling rate and bulk Ni. Since samples of a core that cooled inside a thermally insulating silicate mantle should have uniform cooling rates, the IVB core must have cooled through 500 °C without a silicate mantle. The correlation between cooling rate and bulk Ni suggests that the core crystallized concentrically outwards. Our thermal and fractional crystallization models suggest that in this case the radius of the core was 65 ± 15 km when it cooled without a mantle. The mantle was probably removed when the IVB body was torn apart in a glancing impact with a larger body. Clean separation of the mantle from the solid core during this impact could have been aided by a thin layer of residual metallic melt at the core-mantle boundary. Thus the IVB irons may have crystallized in a well-mantled core that was 70 ± 15 km in radius while it was inside a body of radius 140 ± 30 km. 相似文献
16.
In this study, we present 87Rb/86Sr and 230Th/238U isotope analyses of glasses and phenocrysts from postcaldera rhyolites erupted between 150 to 100 ka from the Long Valley magmatic system. Both isotope systems indicate complex magma evolution with preeruptive mineral crystallization and magma fractionation, followed by extended storage in a silicic magma reservoir. Glass analyses yield a Rb-Sr isochron of 257 ± 39 ka, which can be explained by a feldspar-fractionation event ∼150 ky before eruption. Individual feldspar-glass pairs confirm this age result. A mineral 230Th-238U isochron in a low-silica rhyolite from the Deer Mountain Dome defines an age of 236 ± 1 ka, but the glass and whole rock do not lie on the isochron. U-Th fractionation of the rocks is controlled by the accessory minerals zircon and probably allanite, which crystallized at 250 ± 3 ka and 187 ± 9 ka, respectively. All major mineral phases contain accessory mineral phases; therefore, the mineral isochron represents a mixture of zircon and allanite populations. A precision of ±1 ka for the mixing array implies that the minor phases must have crystallized within this timescale. Longer periods of crystal growth would cause the mixing array to be less well defined. U-series data from other low- and high-silica rhyolites indicate younger accessory mineral crystallization events at ∼200 and 140 ka, probably related to the thermal evolution of the magma reservoir. These crystallization events are, however, only documented by the accessory minerals and had no further influence on bulk magma compositions. We interpret the indistinguishable age results from both isotope systems (∼250 ka) to record the fractionation of small magma batches by filter pressing from a much larger underlying magma volume, followed by physical isolation and extended storage at the top of the magma reservoir for up to 150 ky. 相似文献
17.
T. K. Kyser W. E. Cameron E. G. Nisbet 《Contributions to Mineralogy and Petrology》1986,93(2):222-226
18O values of unaltered olivine and pyroxene phenocrysts in boninites from several areas range from 5.8 to 7.4 and indicate that the source for most boninites is more 18O-rich than MORBs and other oceanic basalts. The source for oxygen and other major elements is most likely a refractory portion of the mantle having a
18O value of up to 7.0 to which must be added a small amount of H2O-rich fluid to induce partial melting. This fluid, which is derived from subducted crust, is the vehicle for LREEs including Nd. The variable, normally low
Nd values typical of boninites do not correlate with the
18O values.Post eruptive exchange of oxygen in the glass of boninites with that of sea water at low temperatures (<150° C) produces
18O values of >10 in optically fresh glass. Hydration of the glass has increased the water contents of most boninites from estimated magmatic values of 1–2 wt% to 2–4 wt% and produced D values of < –80, which may be lower than the original magmatic D values. In contrast to most submarine pillow basalts, the magmatic volatile composition of boninite lavas has been extensively modified as a result of post eruptive interaction with seawater. 相似文献
18.
Effect of melt composition on the partitioning of trace elements between titanite and silicate melt 总被引:7,自引:0,他引:7
Isobaric and isothermal experiments were performed to investigate the effect of melt composition on the partitioning of trace elements between titanite (CaTiSiO5) and a range of different silicate melts. Titanite-melt partition coefficients for 18 trace elements were determined by secondary ion mass spectrometry (SIMS) analyses of experimental run products. The partition coefficients for the rare earth elements and for Th, Nb, and Ta reveal a strong influence of melt composition on partition coefficients, whereas partition coefficients for other studied monovalent, divalent and most quadrivalent (i.e., Zr, Hf) cations are not significantly affected by melt composition. The present data show that the influence of melt composition may not be neglected when modelling trace element partitioning.It is argued that it is mainly the change of coordination number and the regularity of the coordination space of trace elements in the melt structure that controls partition coefficients in our experiments. Furthermore, our data also show that the substitution mechanism by which trace elements are incorporated into titanite crystals may be of additional importance in this context. 相似文献
19.
20.
《Chemie der Erde / Geochemistry》2021,81(2):125765
A large, euhedral crystal of fluorapatite (ca. 19.5 × 20.0 mm) from the Panasqueira tin-tungsten deposit (Portugal) was investigated in terms of the distribution of trace elements by using several microanalytical techniques. The studied material represents almost pure fluorapatite with minor amounts of other cations (mainly Sr, Mn, REE and Fe), OH and Cl. Particular interest was given to the distribution of rare earth elements with respect to the crystallographic orientation. A broad range of analytical techniques were used, including optical microscopy coupled with cathodoluminescence imaging, electron probe microanalysis (EPMA), laser ablation – inductively coupled plasma mass spectrometry (LA-ICPMS), Raman microspectroscopy, and simultaneous thermal analysis coupled with mass spectrometry. The investigated crystal consists of the main crystal with a distinct core and rim (Ap2core and Ap2rim, respectively), which grew on a previous, euhedral crystal (Ap1). The fluorapatite demonstrates various types of zoning: regular oscillatory, irregular, and internal sectoring, which is also reflected in trace elements concentrations. The rim Ap2rim has lower concentrations of Mn, Sr and Fe, and significantly higher concentrations of REE compared to the core Ap2core and older crystal Ap1. Furthermore, the rim Ap2rim is strongly depleted in Th, U and Pb. The entire crystal shows elevated Eu contents, expressed as a strong positive anomaly in chondrite-normalized REE patterns. With regards to the volatiles, F concentrations are constant in Ap1, Ap2core and Ap2rim, whereas Cl is below the EPMA detection limit. The Ap2rim was the only part of the investigated material containing OH and CO3, which were observed in the Raman spectra. Furthermore, part of the crystal Ap2core is extensively altered, likely due to fluid-induced metasomatic processes. LA-ICPMS U-Pb dating yielded highly discordant dates due to common Pb content. A lower intercept age of 297 ± 13 Ma (MSWD = 0.13) indicates the age of the fluorapatite crystallization. The overall analytical data constrain growth and post-growth processes, including crystallization of Ap1 and Ap2core, which both have typical hydrothermal Sn-W deposit characteristics, whereas Ap2rim is related to a carbonate stage of the mineralization in the Panasqueira deposit. 相似文献