首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the details of the theoretical analysis of net uplift capacity of horizontal strip anchor in cohesionless soil using Kötter’s equation. A plane failure surface inclined at a characteristic angle with the ground surface is assumed. Results obtained using the proposed method are compared with the available experimental results of 30 cases for dense to loose cohesionless soil, with the maximum embedment ratio of 8. It is observed that the proposed method leads to the predictions of net uplift capacity of horizontal strip anchor that are very close to the experimental results in 93% cases. The comparison of results with available theoretical solutions shows that, proposed method makes better predictions for anchor embedment ratio less than 8 in dense cohesionless soils.  相似文献   

2.
The horizontal pullout capacity of a group of two rigid strip plate anchors embedded along the same vertical plane in clays, under undrained condition, has been determined. An increase of cohesion with depth has also been incorporated. The analysis has been performed by using an upper bound finite element limit analysis in combination with linear optimization. For different clear spacing (S) between the anchors, the efficiency factor (η) has been determined to evaluate the group failure load for different values of (1) embedment ratio (H/B), (2) the normalized rate (m) which accounts for a linear increase of cohesion with depth, and (3) normalized unit weight (γH/co). The magnitude of the group failure load (1) becomes maximum corresponding to a certain spacing (Scr) between the anchors, and (2) increases with an increase in the γH/co up to a certain value before attaining a certain maximum magnitude. The value of Scr/B has been found to vary generally between 0.7 and 1.2. The maximum magnitude of η, associated with the critical spacing, (1) increases generally with increases in H/B, and (2) decreases with an increase in m. For a greater spacing between the anchors, the analysis reveals the development of a local shear zone around the lower anchor plate. The numerical results developed are expected to be useful for purpose of design.  相似文献   

3.
The horizontal pullout capacity of a group of two vertical strip anchor plates placed along the same vertical plane in sand, has been determined by using the lower bound finite element limit analysis. The effect of vertical spacing (S) between the anchor plates on the magnitude of the total group horizontal failure load (PuT) has been determined for different combinations of H/B, δ/ϕ and ϕ. The magnitude of PuT has been obtained in terms of a group efficiency factor, ηγ, with respect to the failure load for a single vertical plate with the same H/B. The magnitude of ηγ becomes maximum corresponding to a certain critical S/B, which has been found to lie between 0.5 and 0.8. The value of ηγ for a given S/B has been found to become larger for greater values of H/B, ϕ, and δ.  相似文献   

4.
In the last decades a few attention was given to the evaluation of the bearing capacity of embedded footing under inclined loads on a frictional soil. This paper focuses on a numerical study using the finite-difference code Fast Lagrangian Analysis of Continua (FLAC), to evaluate the bearing capacity of embedded strip footing on a frictional soil. The soil is modeled by an elasto-plastic model with a Mohr–Coulomb yield criterion and associative flow rule; the effect of non-associativity of the soil on the bearing capacity is also investigated. The effect of the embedment is estimated though a depth factor, defined as a ratio of the bearing capacity of a strip footing at a depth D to that of a strip footing at the ground surface. The inclination effect is estimated by inclination factors, defined as the ratio of the limit vertical load for a footing under inclined loading to that of the vertically loaded footing. Both swipe and probe analyses were carried out to identify the vertical force–horizontal force (V–H) failure envelope. The results have been compared with those available in the literature.  相似文献   

5.
The ultimate uplift resistance of a group of multiple strip anchors placed in sand and subjected to equal magnitudes of vertical upward pullout loads has been determined by means of model experiments. Instead of using a number of anchor plates in the experiments, a single anchor plate was used by simulating the boundary conditions along the planes of symmetry on both the sides of the anchor plate. The effect of clear spacing (s) between the anchors, for different combinations of embedment ratio (λ) of anchors and friction angle (ϕ) of soil mass, was examined in detail. The results were presented in terms of a non-dimensional efficiency factor (ξγ), which was defined as the ratio of the failure load for an intervening strip anchor of a given width (B) to that of a single strip anchor plate having the same width. It was clearly noted that the magnitude of ξγ reduces quite extensively with a decrease in the spacing between the anchors. The magnitude of ξγ for a given s/B was found to vary only marginally with respect to changes in λ and ϕ. The experimental results presented in this study compare reasonably well with the theoretical and experimental data available in literature.  相似文献   

6.
7.
Two-dimensional plane strain finite element analysis has been used to simulate the inclined pullout behavior of strip anchors embedded in cohesive soil. Previous studies by other researchers were mainly concerned with plate anchors subjected to loads perpendicular to their longest axis and applied through the centre of mass. This paper investigates the behavior of vertical anchors subjected to pullout forces applied at various inclinations with respect to the longest anchor axis, and applied at the anchor top and through the centre of mass. The effects on the pullout behavior of embedment depth, overburden pressure, soil–anchor interface strength, anchor thickness, rate of clay strength increase, anchor inclination, load inclination and soil disturbance due to anchor installation were all studied. Anchor capacity is shown to increase with load inclination angle for anchors loaded through the centre of mass; greater effects are found for higher embedments. The results also show that anchor capacity improves at a decreasing rate with higher rates of increase of soil shear strength with depth. In addition, the capacity of vertically loaded anchors is shown to approximately double when the soil–anchor interface condition changes from fully separated to fully bonded. Similarly, disturbed clay strengths adjacent to the anchor following installation cause a significant reduction in anchor capacity. The results showed a significant effect of the point of load application for anchors inclined and normally loaded. The effects of other parameters, such as anchor thickness, were found to be less significant.  相似文献   

8.
Geotechnical and Geological Engineering - Ring foundations are commonly adopted to support tall and heavy cylindrical structures such as silos, chimneys, cooling towers, circular storage tanks, and...  相似文献   

9.
By using the lower bound finite elements limit analysis, the pullout capacity of an inclined strip anchor plate embedded in a cohesionless soil medium has been computed with an inclusion of pseudo-static horizontal earthquake body forces. The variation of the pullout capacity factor (F γ ) with changes in horizontal earthquake acceleration co-efficient (α h ) has been computed by varying the inclination angle (β) of the anchor plate between 0° and 90°. The results clearly reveal that the pullout capacity factor (F γ ) decreases significantly with an increase in the value of α h . The reduction in the pullout resistance due to seismic forces (1) becomes much more extensive for a vertical anchor plate as compared to the horizontal anchor, (2) decreases generally with increases in the soil friction angle (?) and (3) increases with an increase in friction angle between soil and anchor plate (δ). The developments of the failure zone around the anchor plate were also examined by varying α h and β. The results obtained from the analysis compare well with the solutions reported in literature.  相似文献   

10.
In this paper, the interaction effect of a group of two and four symmetrical as well as asymmetrical helical anchors resting in homogeneous cohesive soil deposit with different helix configurations is determined using finite element analysis. The anchors were pulled to its ultimate failure controlling the displacement. Eight different types of anchor configuration were considered in the analysis, where mainly the number of helical plates, the depth of upper- and lower-most helical plates and the ratio of spacing between the helical plates to the diameter of the plate were varied. The variation of load–displacement curve for each anchor in the group was obtained and subsequently, the ultimate uplift capacity of each anchor was determined. The soil was assumed to follow Mohr–Coulomb failure criteria. The present theoretical observations are generally found in good agreement with those theoretical and experimental results available in the literature for single isolated helical anchor.  相似文献   

11.
Effect of Geotextile Ties on Uplift Capacity of Anchors Embedded in Sand   总被引:1,自引:0,他引:1  
This paper presents the results of experimental investigation on the effect of geotextile ties on uplift capacity of anchors embedded in sand. Uplift capacity of anchor increases with increase in embedment depth to base diameter (H/D) ratio irrespective of type of anchor. With the introduction of tie to anchors, uplift capacity of anchors increases and optimum number of layers of ties is found to be 2. A non linear power model has been developed to predict the uplift capacity at any settlement (Q R) of anchors with tie in terms of uplift capacity at any settlement (Q URs) of anchor without tie, H/D ratio, number of layers of tie and displacement to base diameter ratio (Δ/D). The model is applicable for predicting Q R having the values of Q RS, H/D, N and Δ/D in the range of 0.257 ≤ Q URs ≤ 1.420, 1.5 ≤ H/D ≤ 3.0, 1 ≤ N ≤ 4, 0.8 ≤ Δ/D ≤ 8.  相似文献   

12.
基于溶质运移对流弥散理论的变密度海水入侵模型广泛用于海水入侵研究,而水动力弥散系数是影响模型模拟效果的关键性参量之一。利用传统土柱溶质运移试验结合旁侧抽水,采用数值反演法成功获取了水平及垂直两方向弥散度。相对于传统方法,在不增加试验复杂度的前提下,同时推求了不同方向的弥散度,提高了试验效率,节约了试验成本,可广泛用于测定水动力弥散系数等参数。  相似文献   

13.
This paper deals with soil/reinforced geotextile interface behaviour in direct shear and pullout movements. A soil/geosynthetic direct shear apparatus, developed in accordance to EN ISO 12957-1 (2004) and ASTM D5321-92 (1992) standards, is presented. Some details of the test (like: specimen fixation, influence of the vertical stress on the registered horizontal force, type of test and measurement of the vertical displacement) are discussed and modifications in the test procedures are adopted. Then, the reinforced geotextile and the residual soil of granite used in the research are described. The behaviour of soil/geosynthetic interface in direct shear is characterized based on modified direct shear tests and maximum interface shear stress is determined at peak and residual for a confining stress of 50 kPa. The modification in the pullout test apparatus described by Lopes and Ladeira (1996a; 1996b) and by Lopes and Lopes (1999) are noticed. The behaviour of soil/geosynthetic interface in pullout is characterized based on pullout tests performed, in accordance EN 13738 (2004), and interface shear stress at maximum pullout force is defined for a confining stress of 50 kPa. Finally, the values of interface coefficient at soil/geosynthetic interface are obtained in direct shear and in pullout and then compared. The main conclusions that can be outlined from the present study are the following: modifications should be made to EN ISO 12957-1 (2004) standard, namely in what concerns the dependence of the measured horizontal force from the vertical stress, the difficulties to perform constant area direct shear test with the lower half box filled with soil and on the measurement of the vertical displacement of the load plate; on the contrary to which is normally accepted the characteristics of the behaviour of soil/geosynthetic interface in pullout, when the geosynthetic has a full plane contact area with the soil, are not able to be obtained based on results of direct shear tests, as in this type of tests the contribution of the geosynthetic deformation on the characteristics of the interface in pullout is not considered.  相似文献   

14.
Soil–water characteristic curve (SWCC) is one of the input components required for conducting the transient seepage analysis in unsaturated soil for estimating pore water pressure (PWP). SWCC is usually defined by saturated volumetric water content (θs), residual water content (RWC) and air entry value (AEV). Mathematical model of PWP could be useful to unearth the important SWCC components and the physics behind it. Based on authors’ knowledge, rarely any mathematical models describing the relationship between PWP and SWCC components are found. In the present work, an evolutionary approach, namely, multi-gene genetic programming (MGGP) has been applied to formulate the relationship between the PWP profile along soil depth and input variables for SWCC (θs, RWC and AEV) for a given duration of ponding. The PWP predicted using the MGGP model has been compared with those generated using finite element simulations. The results indicate that the MGGP model is able to extrapolate the PWP satisfactory along the soil depth for a given set of boundary conditions. Based on the given AEV and saturated water content, the PWP along the depth can be determined from the newly developed MGGP model, which will be useful for design and analysis of slopes and landfill covers.  相似文献   

15.
This paper examines the potential of relevance vector machine (RVM) in prediction of ultimate capacity of driven piles in cohesionless soils. RVM is a Bayesian framework for regression and classification with analogous sparsity properties to the support vector machine (SVM). In this study, RVM has been used as a regression tool. It can be seen as a probabilistic version of SVM. In this study, RVM model outperforms the artificial neural network (ANN) model based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also estimates the prediction variance. An equation has been developed for the prediction of ultimate capacity of driven piles in cohesionless soils based on the RVM model. The results show that the RVM model has the potential to be a practical tool for the prediction of ultimate capacity of driven piles in cohesionless soils.  相似文献   

16.
In this paper, the limit equilibrium method is used to compute seismic passive earth pressure coefficients and the vertical uplift capacity of horizontal strip anchors in presence of both horizontal and vertical pseudo-static earthquake forces. By considering a simple planar failure surface, distribution of soil reaction is obtained through the use of Kötter’s equation. Presence of pseudo-static seismic forces induces a considerable reduction in the seismic passive earth pressure coefficients. The reduction in seismic passive earth pressure coefficients increases with increase in magnitude of the earthquake accelerations in both horizontal and vertical directions and with increase in wall friction angle. The vertical uplift capacity of horizontal strip anchor is obtained for various values of soil friction angle, embedment ratio and seismic acceleration coefficients in both horizontal and vertical directions by using rigorous computational optimization. Proper justification for selected value of wall friction angle is established. Results are presented in the form of non-dimensional breakout factor for anchor. A significant reduction in breakout factor is observed in presence of both the seismic acceleration coefficients whereas breakout factor increases with increase in soil friction angle and embedment ratio even under the seismic condition. Angles of failure planes keep changing with change in seismic acceleration coefficients and failure zone shifts towards the critical direction of seismic acceleration coefficients. Present results are compared and found in good agreement with some specific available results in literature.  相似文献   

17.
水平锚板极限抗拔力研究   总被引:1,自引:0,他引:1  
简要回顾了水平锚板抗拔极限承载力计算方法的发展历史。考虑对数螺旋线的破坏面并结合特征线理论,提出了一种新的浅埋条形板极限上拔力的计算方法并编制了程序。对无粘性土,通过与前人的试验资料和Meyerhof andAdams计算理论得出的结果进行了比较,表明了本文方法是正确可行的。  相似文献   

18.
19.
基于土体的三维破坏模式,探讨了饱和地基的极限承载力随基础宽长比的变化规律。研究了基础的形状对极限承载力的影响;通过引入合理的能量安全系数FS值,进一步探讨了饱和地基三维稳定条件下的承载力设计值问题。  相似文献   

20.
Geotechnical and Geological Engineering - When constructing a retaining wall adjacent to existing basements, the width of the soil mass can be limited. The traditional theories are not suitable for...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号