首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Hydraulic Conductivity of Fly Ash-Amended Mine Tailings   总被引:1,自引:1,他引:0  
The objective of this study was to evaluate the effect of fly ash addition on hydraulic conductivity (k) of mine tailings. Mine tailings used in this study were categorized as synthetic tailings and natural tailings; two synthetic tailings were developed via blending commercially-available soils and natural tailings were collected from a garnet mine located in the U.S. Two fly ashes were used that had sufficient calcium oxide (CaO) content (17 and 18.9 %) to generate pozzolanic activity. Hydraulic conductivity was measured on pure tailings and fly ash-amended tailings in flexible-wall permeameters. Fly ash was added to mine tailings to constitute 10 % dry mass of the mixture, and specimens were cured for 7 and 28 days. The influence of fly ash-amendment on k of mine tailings was attributed to (1) molding water content and (2) plasticity of the mine tailings. Tailings that classified as low-plasticity silts with clay contents less than 15 % exhibited a decrease in k when amended with fly ash and prepared wet of optimum water content (w opt ). Tailings that classified as low-plasticity clay exhibited a one-order magnitude increase in k with addition of fly ash for materials prepared dry or near w opt . The decrease in k for silty tailings was attributed to formation of cementitious bonds that obstructed flow paths, whereas the increase in k for clayey tailings was attributed to agglomeration of clay particles and an overall increase in average pore size. The results also indicated that the effect of curing time on k is more pronounced during the early stages of curing (≤7 days), as there was negligible difference between k for 7 and 28-days cured specimens.  相似文献   

2.
Three mixtures of cement–bentonite slurry containing 28, 36 and 44 % PFA (as a proportion of cementitious materials) were tested using the unconfined compressive strength and triaxial apparatus to determine the stress–strain and shear strength relationships for samples cured for various periods. The samples were batched using 4 % bentonite and 20 % cementitious materials (by mass of water) and allowed to cure underwater once extruded from sealed moulds. Curing periods of 14, 28 and 90 days were selected to investigate the changes in behaviour at durations commonly specified (28 and 90 days) as well as providing insight into changing behaviour with curing (additional curing periods of 7 and 60 days were investigated on a smaller number of samples to increase understanding). Two rates of displacement were used (1.0 and 1.3 mm/min) and four confining pressures (0, 50, 100 and 200 kPa). Shear strength and strain at peak deviator stress of the samples do not appear to vary considerably with confining pressure. For samples containing 28 % PFA, the majority of physical properties exhibited by the cement–bentonite samples change with curing period up to 60 days, where after the properties become similar to those cured for 90 days.  相似文献   

3.
This paper studies the effects of sodium-based alkaline activators and class F fly ash on soil stabilisation. Using the unconfined compressive strength test (UCS), the effectiveness of this binder is compared with that of a common cement-based binder. Influence of the activator/ash ratio, sodium oxide/ash ratio and sodium hydroxide concentration was also analysed. Sodium hydroxide concentrations of 10, 12.5 and 15 molal were used for the alkaline-activated specimens (AA), with activator/ash ratios between 1 and 2.5 and ash percentages of 20, 30 and 40 %, relatively to the total solids (soil + ash). UCS was determined at curing periods of 7, 28, 90 and 365 days, and the most effective mixtures were analysed for mineralogy with XRD. The results showed a clear increase in strength with decreasing activator/ash ratio (up to a maximum of 43.4 MPa), which is a positive result since the activator is the most expensive component in the mixture. Finally, UCS results of the cement and AA samples, at 28 days curing, were very similar. However, AA results proved to be just between 20 and 40 % of the maximum UCS obtained at 1 year curing, while cement results at 28 days are expected to be between 80 and 90 % of its maximum.  相似文献   

4.
Gypsum Induced Strength Behaviour of Fly Ash-Lime Stabilized Expansive Soil   总被引:1,自引:1,他引:0  
Physical and engineering properties of soil are improved with various binders and binder combinations. Fly ash and lime are commonly used to improve the properties of expansive soils. An attempt has been made, in this paper, to examine the role of gypsum on the physical and strength behaviour of fly ash-lime stabilized soil. The change in strength behaviour is studied at different curing periods up to 90 days, and the mechanism is elucidated through pH, mineralogical, microstructural and chemical composition study. The strength of soil-fly ash mixture has improved marginally with the addition of lime up to 4 % lime and with curing period for 28 day. Significant increase in strength has been observed with 6 % lime and enhanced significantly after curing for 90 days. The variations in the strength of soil with curing period is due to cation exchange and flocculation initially, and binding of particles with cementitious compounds formed after curing. With addition of 1 % gypsum to soil-fly ash-lime, the strength gain is accelerated as seen at 14 day curing. The accelerated strength early is due to formation of compacted structure with growth of ettringite needles within voids. However, strength at curing for 28 day has been declined due to annoyance of clay matrix with the increase in size of ettringite needle; and again increased after curing for 90 days. The rearrangement of clay matrix and suppression of sulphate effects with formation of cementitious compounds are observed and found to be the main responsible factors for strength recovered.  相似文献   

5.
In order to recycle the incineration fine bottom ash generated from municipal solid waste as a fine aggregate construction material(<4.75 mm), a series of uniaxial compression tests were carried out according to the mixing ratio of bottom ash, the curing temperature, the water–cement ratio, the mixing ratio of expanded poly styrene (EPS), and the curing time. As the results of tests, the compression strengths cured 28 days of all specimens prepared with different mixing ratios are ranged between 87 and 220 kg/cm2. The water content of the hardened cement mortar is not much different with the curing time. Also, the water content is increased with increasing the mixing ratio of bottom ash, the water–cement ratio, and the mixing ratio of EPS. The unit weight of the hardened cement mortar is decreased with increasing the mixing ratio of bottom ash and the mixing ratio of EPS. The compression strength of the hardened cement mortar is decreased with increasing the mixing ratio of bottom ash. The compression strength of the hardened cement mortar cured at 30 ± 2°C and 40 ± 2°C is bigger than that of the cement mortar cured at normal temperature (20 ± 2°C). However, the compression strength of the hardened cement mortar cured at 30 ± 2°C is bigger than that of the cement mortar cured at 40 ± 2°C. The compression strength is increased at the range from 0.55 to 0.6 of water–cement ratio, and then the compression strength is decreased over 0.65 of water–cement ratio. Meanwhile, the compression strength of the hardened cement mortar is decreased with increasing the mixing ratio of EPS.  相似文献   

6.
The potential to use the alkaline residue products fly ash, green liquor dregs, and lime mud originating from paper mills as dry cover materials to seal tailings has been investigated. Metals concentration in lime mud and fly ash had the lowest and highest contents, respectively. The tailings (<1 % sulfur content, primarily pyrite) were disposed about 50 years ago and originated from the former Rönnskär mine site in Sweden. The results of chemical composition analysis show that the raw unoxidized tailings are active toward oxidation, while the components of the adjacent oxidized tailings are not. To quantify the release of metals from the tailings and to evaluate the effect of a sealing layer on oxidation and weathering of the tailings, batch leaching tests were conducted in which leachate from alkaline residue materials was fed to the tailings. The results show that a higher concentration of most trace elements is leached from the unoxidized tailings than from the oxidized tailings. Except As and Cr, the rest of analyzed metals (Cd, Cu, Ni, Pb) became immobilized in response to the increased pH as a consequence of the amendment. The three tested alkaline amendments show a similar potential for preventing the release of metals (with the exception of As and Cr) from the tailings. Under either aerobic or anaerobic conditions, microbial activity was found to be of minor importance. XRD analysis of the field samples revealed that it was feasible to use alkaline residue products in covering tailings, and that it was advantageous to use ash as a cover material more than dregs.  相似文献   

7.
王涛  刘斯宏  郑守仁  鲁洋 《岩土力学》2019,40(4):1420-1426
针对高堆石坝坝体变形大且持续时间长的问题,提出了一种提高堆石体压缩模量、减缓流变变形的方法,即利用易流动、后期硬化的高掺粉煤灰水泥砂浆(简称复合浆液)在堆石体摊铺过程中充填堆石体孔隙,在施工碾压的基础上进一步减小堆石体孔隙率。首先,通过观测复合浆液在透明玻璃球中的流动性态,研究不同配比与掺量对复合浆液流动特性的影响;然后,通过侧限压缩和流变试验,研究掺复合浆液堆石料的压缩模量、流变变形的变化规律。试验结果表明:复合浆液在颗粒体孔隙中的流动性能与粉煤灰掺比、水胶比、砂粒最大粒径以及掺量有关;复合浆液的掺入能有效提高堆石料压缩模量,减少流变变形,且对于软岩料、级配不良料效果更为明显;复合浆液在堆石料中主要起到了充填、胶结与润滑作用。  相似文献   

8.
垃圾焚烧飞灰水泥固化体强度稳定性研究   总被引:1,自引:0,他引:1  
针对垃圾焚烧飞灰安全处置技术要求,采用水泥对其进行固化、稳定化处理,研究了不同水泥添加量、不同养护时间和渗沥液浸泡时间对固化体无侧限抗压强度及破坏特性的影响,并对垃圾渗沥液的侵蚀机制进行了分析。结果表明:当水泥添加量小于5%,养护时间小于3 d时,飞灰固化体在渗沥液浸泡下迅速解体,垃圾渗沥液的侵蚀对飞灰固化体的强度有较大的影响,浸泡后的固化体呈现出明显的应变软化特征,而未经浸泡的固化体的强度增长符合y=a[1-exp(-bt)]模式。随着水泥添加量及养护时间的增加,飞灰固化体无侧限抗压强度增加,破坏应变减小,而随着浸泡时间的增加,飞灰固化体的无侧限抗压强度先增大后减小,转折点大约在5~7 d,破坏应变近似呈线性增大。渗沥液对飞灰固化体的侵蚀主要是其成分抑制了固化体水化反应和破坏了水化产物。研究成果可为垃圾焚烧飞灰的安全处置技术提供理论依据和参数支持。  相似文献   

9.
高掺量粉煤灰固结材料的矿物组成及微观结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学成分、X衍射和电子显微镜分析等方法研究了高掺量粉煤灰固结材料的矿物组成及微观结构。结果表明 ,其矿物组成主要是 3Al2 O3 ·2SiO2 和硅铝酸盐的胶凝物相 ,具有较大孔径的多孔结构特征 ,与水泥混凝土的矿物组成和微观结构有较大不同 ;粉煤灰的掺量、养护龄期对水化产物的生成量有直接影响 ;固结剂掺量大于 2 0 %时 ,粉煤灰和固结剂全部反应形成多孔状的胶凝体水化产物  相似文献   

10.
针对大型堆填场基层结构工程,本着就地取材节约成本的原则,利用吹填砂作为骨料,添加粉煤灰、煤渣和水泥,采用正交试验方法,编制正交设计表,配制不同比例的混合料进行无侧限抗压强度试验。采用方差对不同龄期的混合料抗压强度进行分析,并对混合料加固机理进行研究,给出了混合料最佳质量配比,即水泥20%,粉煤灰15%,煤渣10%,此时混合料的强度最大;其水泥掺量对混合料强度起着关键作用,随着龄期的增长粉煤灰与煤渣对混合料强度影响程度逐渐增强,不过煤渣对混合料初期强度影响不及粉煤灰。   相似文献   

11.
Hydro-mechanical evaluation of stabilized mine tailings   总被引:3,自引:0,他引:3  
. In this study, mine tailings waste was stabilized using a combination of lime, fly ash type "C", and aluminum. Treated samples were subjected to mineral identification for evaluating the formation of ettringite and gypsum. Also, unconfined compression, hydraulic conductivity, and cyclic freeze and thaw tests were performed to evaluate the hydro-mechanical properties of the stabilized samples. Experimental results have shown that the application of lime and fly ash type "C" to high sulfate content tailings has improved its plasticity, workability, and volume stability. Moreover, upon addition of aluminum to lime and fly ash in a sulfate-rich environment, ettringite and calcium sulfo-aluminate hydrate are formed in these samples. Application of 5% lime, 10% fly ash type "C", in combination with 110 ppm aluminum, resulted in the formation of a solid monolith capable of producing more than 1,000 kPa of unconfined compressive strength, and reduced tailings permeability to 1.96᎒–6 cm s–1, which is less than the recommended permeability of 10–5 cm s–1 by most environmental protection agencies for reusability of solidified/stabilized samples. The permeability of the treated tailings samples remained below the recommended permeability, even after exposing the treated samples to 12 freeze and thaw cycles. Therefore, based on the experimental results, it is concluded that treatment of high sulfate-content tailings with lime and fly ash, combined with the availability of aluminum for reactions, is a successful method of solidifying highly reactive mine tailings.  相似文献   

12.
At present, nearly 100 million tonnes of fly ash is being generated annually in India posing serious health and environmental problems. To control these problems, the most commonly used method is addition of fly ash as a stabilizing agent usually used in combination with soils. In the present study, high-calcium (ASTM Class C—Neyveli fly) and low-calcium (ASTM Class F—Badarpur fly ash) fly ashes in different proportions by weight (10, 20, 40, 60 and 80 %) were added to a highly expansive soil [known as black cotton (BC) soil] from India. Laboratory tests involved determination of physical properties, compaction characteristics and swell potential. The test results show that the consistency limits, compaction characteristics and swelling potential of expansive soil–fly ash mixtures are significantly modified and improved. It is seen that 40 % fly ash content is the optimum quantity to improve the plasticity characteristics of BC soil. The fly ashes exhibit low dry unit weight compared to BC soil. With the addition of fly ash to BC soil the maximum dry unit weight (γdmax) of the soil–fly ash mixtures decreases with increase in optimum moisture content (OMC), which can be mainly attributed to the improvement in gradation of the fly ash. It is also observed that 10 % of Neyveli fly ash is the optimum amount required to minimize the swell potential compared to 40 % of Badarpur fly ash. Therefore, the main objective of the study was to study the effect of fly ashes on the physical, compaction, and swelling potential of BC soils, and bulk utilization of industrial waste by-product without adversely affecting the environment.  相似文献   

13.
One of the effective utilization strategies for fly ash and waste sludge is to use it as a fill material to raise low lying areas. Bearing capacity and settlement are the required input for the design of foundations on such fills. To determine the bearing capacity, plate load tests were carried out on the compacted beds of fly ash, fly ash-waste sludge and fly ash-waste sludge–cement. The tests were conducted by keeping 90, 95 and 100 % relative compaction, fresh and fresh submerged conditions, aged (28 days) and aged (28 days) submerged conditions as variables of the tests. The load-settlement curves were plotted for fly ash and mix blends. The minimum load was obtained for fly ash under submerged condition, further the test results show that the fly ash becomes flowable on submergence. On the other hand when the fly ash was mixed with waste sludge and cement, the load carrying capacity was found to improve to a greater extent. Test beds prepared with fly ash–cement-waste sludge under as compacted condition (fresh) show very high load carrying capacity (1600–2180 kN/m2). An analytical method has also been validated for fly ash–cement-waste sludge mix which was developed to estimate the settlement of footing resting on fly ash taking into account the pre-consolidation stresses. The non linearity of load-settlement behavior was appropriately modeled, on the basis of available plate load test data incorporated in the method. The method requires as input, the pre-consolidation stress and Young’s modulus of compacted mix of fly ash-waste sludge–cement. A comparison of load-settlement values observed in plate load tests and predicted values for the mix 47 %FA + 45 %S + 8 %C, using the proposed method shows good agreement. Hence, this relationship may also be useful to the field engineers to check the reported load-settlement values for such types of mixes in the field.  相似文献   

14.
Clayey subgrade soil requires treatment in order to make the subgrade stable for pavement structures. Treatment of clayey soil i.e. stabilization of clayey soil by cement, lime, and fly ash are established techniques used in geotechnical and highway engineering. Stabilization by alkali activation of fly ash is reported recently but literatures are limited. Present study investigates the stress strain behavior, peak stress and ultimate strain of clayey soil stabilized by slag and slag-fly ash blending by alkali activation. The peak stress as high as 25.0 N/mm2 may be obtained at 50% slags content when 12 molar sodium hydroxide solutions were used. Peak stress, ultimate strain and slope of stress–strain curve of stabilized clay are controlled by Na/Al and Si/Al ratios. Stress–strain response and peak stress of slag and fly ash blended specimen are not governed by Na/Al and Si/Al ratios; rather the behavior is dependent predominantly on slag content.  相似文献   

15.
Coal, a fossil fuel, is the largest source of energy for the generation of electricity in India. In order to study the potential environmental hazards by coal based power plants, particulate matters were collected using Stack Monitoring Kit and gaseous pollutants by Automatic Flue Gas Analyzer. The morphological and chemical properties, mineralogical composition and particle size distributions have been determined by SEM–EDX, XRD and CILAS. The data revealed the presence of particulate matters, SO2, NOx in the range of 236–315, 162–238, 173–222 mg/Nm3 respectively. The emission of CO2 was in the range of 43,004–60,115 Nm3/h with an average of 52,830 Nm3/h. Among the elements, Fe > Mn > Al > Zn > B > Ni > Cr > Cu were present in substantially higher proportion than Pb > Mo > Cd > Se > As > Hg. It was found that most of the elements were concentrated on fly ash surface rather than coal, bottom ash and pond ash. This variation may be attributed to the fineness of fly ash particles with large surface ratio to mass. Mineralogical studies of coal and fly ash by X-ray diffraction revealed the presence of mullite, quartz, cristobalite and maghemite. Presence of mullite and quartz found in fly ash indicate the conversion of complex minerals to mullite and quartz at high temperature. Transfer Coefficient was calculated to determine the ratio of the enrichment of trace elements in fly or bottom ash with respect to coal and pond ash.  相似文献   

16.
A pressure cell apparatus has been developed in this research work to study the long-term hydro-mechanical behaviour of cemented paste backfill (CPB) cured under applied stress. The samples are cured for 7, 28, 90 and 150 days and the evolution of their mechanical, hydraulic, physical and microstructural properties is studied. Also, the suction, temperature and electrical conductivity are monitored for a period of 150 days of curing. The testing and monitoring programmes are conducted in undrained conditions, with and without pressure application. The obtained results show that the curing stress affects the hydro-mechanical behaviour of CPB for up to 28 days. Within this curing period, the CPB exhibits enhanced hydro-mechanical performance. However, application of sustained excessive curing stress onto the CPB samples induces the propagation of microcracks in the backfill structure, thus causing lower mechanical strength and higher fluid permeability at the more advanced ages. Furthermore, the mineralogical and chemical compositions of the tailings (e.g., sulfidic tailings) can significantly alter the mechanical strength properties (uniaxial compressive strength and elastic modulus) and the permeability of the CPB. The evolution of coupled factors and characteristics of the CPB at an early age control and influence its long-term behaviour and performance.  相似文献   

17.
地聚物胶凝材料能够替代水泥基胶凝材料作为固化剂应用于狭窄肥槽回填等工程问题中,有效降低水泥生产过程中的污染及能耗,但目前对于流态地聚物固化土胶凝材料的研究较少。采用3种新型绿色胶凝材料联合碱激发剂固化工程渣土形成流态地聚物固化土,通过对比其无侧限抗压强度,探究每种胶凝材料对于固化土强度特性的影响,同时建立强度预测模型,分析不同因素对于强度的影响程度。研究结果表明:固化土的强度随着碱激发剂模数的增加先提高后降低;固化土强度随着高炉矿渣(GGBS)、粉煤灰、稻壳灰掺量的增加均呈上升趋势,随着稻壳灰粒径的增长呈下降趋势;碱激发剂模数增至1.2、GGBS掺量增至10%、粉煤灰掺量增至8%和稻壳灰掺量增至11%时,固化土强度提升最为显著;强度预测模型预测结果的平均相对误差仅为5.57%,预测结果较为精准;预测模型中各层权值的计算结果表明养护龄期对于固化土强度影响最大,稻壳灰粒径影响程度最小。研究结果可以为固化土在实际工程的应用提供理论支持。  相似文献   

18.
针对不同养护龄期对于粉煤灰水泥土抗剪强度影响的问题,采用不固结不排水三轴剪切试验从宏观力学的角度分析养护龄期对粉煤灰水泥土的影响,结合SEM试验和XRD试验从微观角度分析试样内部结构与物质成分。试验结果表明:从宏观角度分析,粉煤灰水泥土的应力-应变曲线呈现应变软化型,试样的抗剪强度随养护龄期的增加逐渐增大且28 d的抗剪强度最大,同时,由于试样内部各物质之间的反应随养护龄期的增加而持续进行,龄期越长试样内部各物质之间的胶结作用越强,致使试样的内摩擦角和黏聚力随养护龄期逐渐增大;从微观角度分析,试样内部生成的结晶物质(钙矾石)与胶凝物质(C-S-H凝胶)等填充试样内部的大孔隙且相互黏结,导致试样愈加密实,抗剪强度增大。本文旨在为粉煤灰等材料固化黄土的抗剪强度提供试验依据,为粉煤灰等工业副产品在工程中的应用提供参考,对粉煤灰的利用和环境保护具有参考意义。  相似文献   

19.
查甫生  刘松玉  杜延军 《岩土力学》2006,27(Z1):549-554
研究掺粉煤灰对合肥膨胀土的物理性质指标以及胀缩性指标等的影响,探讨利用粉煤灰改良膨胀土的措施与效果。试验研究结果表明,在膨胀土中掺入适量的粉煤灰可有效降低膨胀土的塑性指数、降低膨胀势、减小线缩率与降低活性。在膨胀土中掺入粉煤灰还可改变膨胀土的击实特性,一定击实功作用下,随着掺灰率的增加,土体的最优含水率与最大干密度均减小,膨胀土中掺入粉煤灰后,膨胀土可在较小的含水率下通过击实或压实达到稳定。掺灰膨胀土的膨胀量与膨胀力随养护龄期的增长而减小;没有经过养护的掺灰土,其无侧限抗压强度随掺灰率的变化几乎没有变化,经过7 d养护后,土的无侧限抗压强度有所增长,并且存在一个峰值点,合肥膨胀土的无侧限抗压强度所对应的最佳掺粉煤灰率约为15 %~20 %。  相似文献   

20.
The management of uranium tailings, generated as a by-product of ore processing, is particularly important to minimize the environmental footprint of the industry. A clear understanding of tailings slurry behavior is required at the time of deposition to help evaluate the storage capacity and life span of the containment facilities. The main purpose of this study was to investigate the segregation and self-weight settling properties of uranium tailings. Detailed laboratory investigations were conducted on tailings from 4, 5, and 6 % nominal mill feeds (high-grade McArthur River ores blended with special wastes on site) from the Cameco Key Lake operation. The results indicate that the three uranium tailings can be characterized as a sandy silt material with a negligible amount of clay. Their depositional behavior is governed by the initial solids content of the slurry. The investigated tailings showed insignificant segregation between 25 and 40 % initial solids content. The initial hydraulic conductivity during settling was about 10?4 m/s at a void ratio of 4 and was increased by half an order of magnitude for the 4 % mill feed, and by almost two orders of magnitude for the 5 and 6 % mill feeds at a void ratio of 8. Over the same range of initial void ratio, the settling potential increased threefold: from 8 to 24 % for the 4 % mill feed and from 12 to 36 % for the 5 and 6 % mill feeds. The better rate and amount of dewatering of future high mill feed tailings as compared to the current low mill feed tailings means that the onsite containment facility can store more tailings thereby supporting a longer life span of the mill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号