首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crushed salt can be used as backfill to bury and conduct heat away from radioactive waste in salt repositories. As the crushed salt compacts during reconsolidation, its thermal, mechanical and hydrologic properties will change in a manner related to the porosity. Measurements of crushed salt thermal properties are conducted to evaluate such relationships. A simple mixture theory model is presented to predict thermal conductivity of consolidating salt in repository conditions. Experimental work was completed to evaluate the model by measuring thermal conductivity, thermal diffusivity and specific heat of crushed salt as a function of porosity and temperature. Sample porosity ranged from 0 to 46 %, and measurements were made at ambient pressure, from room temperature to 300 °C. These are the temperature conditions expected in a radioactive waste storage facility. Crushed salt thermal conductivity decreases with increasing porosity and temperature. Thermal diffusivity showed little porosity dependence but decreased with increasing temperature. Specific heat also shows little porosity dependence but increases with increasing temperature. Fracture porosity in deformed bedded salt cores appears to reduce thermal conductivity more dramatically than inter- and intra-granular porosity in consolidated salt. A long-term effort to dry crushed salt at high temperatures resulted in a 0.48 weight-percent loss of water that had resided at grain boundaries and in intra-granular fluid inclusions. While this loss does not significantly affect thermal properties, the release of this water volume could impact the mechanical response of the reconsolidating salt and host rock.  相似文献   

2.
A large amount of loose landslide deposits caused by a strong earthquake can cause several mountain disasters (slope failures, debris flows, and others) under heavy rainfall conditions. Loose landslide deposits are sensitive to water due to their special structural properties, such as loose structure and wide grading. There are complex conformational and mechanical responses of loose deposits, but the initial conditions and formation mechanisms of mountain disasters can be described by several different parameters. Among these parameters, the property of failure is one of the most important, and it is used to describe extremely dangerous situations for each kind of disaster. In this study, a two-dimensional particle flow code platform (PFC2D) was used to simulate the failure properties, and a laboratory test verified the validity of the numerical experiments. Different sample scales (S1, 150?×?300 mm; S2, 300?×?600 mm; S3, 600?×?1200 mm) and fine particle contents smaller than 5 mm (f-1, 20%; f-2, 30%; f-3, 40%) were considered. The simulation results show that failure stress increases with increasing sample scale or fine particle content under low confining pressure and decreases under high confining pressure. The tendency of failure stresses to vary mutates with different fine particle contents when the confining pressure changes. The mutation value of the confining pressure is 280 kPa. In addition, the phenomenon of strain softening becomes less obvious when the confining pressure increases.  相似文献   

3.
Strain rate during testing, uniaxial or triaxial, has important influence on the measured mechanical properties of rocks. Uniaxial compression tests were performed at nine pre-specified static-to-quasistatic strain rates (ranging from 1 × 10?5 to 1 × 10?1 s?1) on coarse crystal marble. The aim is to gain deep insight into the influence of strain rate on characteristic stresses, deformation properties and conversion of strain energy of such rock. It is found that the strain rate of 5 × 10?3 s?1 is the threshold to delineate the failure modes the tested coarse marble behaves in. At a strain rate less than this threshold, single-plane shear and conjugate X-shaped shear are the main failure modes, while beyond this threshold, extensile and splitting failures are dominant. The stress for crack initiation, the critical stress for dilation, the peak stress, and Young’s modulus are all found to increase with strain rate, with an exception that the above stresses and modulus appear relatively low compared to the strain rate in the range of between 1 × 10?4 and 5 × 10?3 s?1. The pre-peak absorbed strain energy, damage strain energy and elastic strain energy are found to increase with strain rate. In addition, the elastic strain energy stored before peak point favors brittle failure of the specimen, as the more stored elastic energy in the specimen, the stronger the fragmenting.  相似文献   

4.
盐腔内回填碱渣沉降固结特性室内试验研究   总被引:1,自引:0,他引:1  
冀国栋  杨春和  徐玉龙 《岩土力学》2014,299(2):407-412
碱渣回填到充满卤水的废弃盐腔后,颗粒会自由沉降到盐腔底部形成沉积层,进而在自重作用下固结。为了解盐腔内回填碱渣的沉降固结特性,以江苏淮安地区碱渣为对象,进行了沉降柱试验和固结试验。试验结果表明:(1)碱渣在卤水中的沉降过程可以分为3个阶段:絮凝阶段、沉降阶段和固结阶段。初始浓度对碱渣的沉降曲线和沉降速率有很大的影响。(2)碱渣颗粒分布、密度、含水率和孔隙比均呈现出分层特性,颗粒粒径、密度随深度的增加而增大,含水率、孔隙比随深度的增大而减小。(3)碱渣具有很高的压缩性,压缩系数a1-2为3.36 MPa-1。在压力范围小于100 kPa下,固结系数随固结压力的增加而显著减小。试验结果对了解盐腔内回填碱渣的沉降固结特性提供了参考,有利于指导回填施工工艺和碱渣的后期处理。  相似文献   

5.
谈云志  胡新江  喻波  张华  付伟 《岩土力学》2013,34(11):3077-3084
针对传统仪器无法考虑岩土工程中温度和荷载等因素综合作用的缺陷,研制了一套多功能土-水特征曲线试验仪。以粉土为研究对象,开展了不同固结应力作用下粉土的土-水特征曲线试验,并测量其增减湿过程中土体的体积胀缩量,以便修正体积变化对其体积含水率的计算误差。结果表明,粉土在减湿过程中,土体的体积发生明显的收缩。其收缩量与固结应力水平有关,固结应力越小,则减湿引起的体缩量越大。但土体在增湿过程中的体积则基本保持不变。固结应力对粉土 土-水特征曲线的进气值、增减湿速率影响较大,固结压力越大,其进气值越大、减湿速率也越大。最后,为揭示固结应力对土的持水性能的影响机制,开展了不同固结应力作用下土体的细观试验。结果表明,固结应力主要改变了土体团粒间的大孔隙,而对黏土颗粒之间的孔隙影响较小。土体的持水性能与土体的孔隙大小和分布模式密切相关,大孔隙主要影响土体的进气值,而其孔隙分布模式则控制其增减湿湿速率。  相似文献   

6.
An analytical method was proposed to estimate depletion of groundwater in the confining layers through their entire exploitation history and also for limited periods, especially when data on the drawdown history of the pumped aquifer were sparse. The method was based on the solution for drawdown distribution in the confining layer under the condition that the water level was not under equilibrium conditions but resulted from the delayed drainage phenomenon at the outset. First, the method was used on a hypothetical confined regional aquifer system. It suggested that the calculation error of depletion was generally small and that the cumulative released water from the confining layer can be calculated as being closer to the actual total depletion (2.88 km3) than an existing method. Then, the method was applied to estimate the groundwater quantity released from confining layers in the Su-Xi-Chang region of China, where there is a paucity of groundwater level data. The depletion of groundwater in confining layers represented approximately 54 to 82 % of total withdrawals (9.2 km3) from 1965 to 2000. Therefore, the confining layers are the main consolidation layers in Su-Xi-Chang area. Uncertainty in the properties of the confining layers made the depletion calculation subject to error.  相似文献   

7.
Based on a standard compaction test and a standard sieve analysis test on five tested materials, the effects of the particle size distribution on the compaction behavior and particle crushing of a crushed mudstone particle mixture were investigated. Testing results indicate that the value of the maximum dry density ranges from 2.09 to 2.17 g/cm3, the optimum moisture content from 7.40 to 11.66 %, and the average relative breakage from 0.065 to 0.285, respectively. Based on the tested data, the variations of the maximum dry density, optimum moisture content and average relative breakage, with the median particle diameter and gravel content of the tested mixtures, were analyzed, respectively.  相似文献   

8.
层状盐岩力学和变形特性数值试验研究   总被引:7,自引:0,他引:7  
王安明  杨春和  黄诚  李银平 《岩土力学》2009,30(7):2173-2178
对含泥岩夹层层状盐岩力学和变形特性进行有限元分析。首先,用数值试验方法预测含泥岩夹层层状盐岩体宏观等效弹性力学参数,然后,建立层状盐岩复合体细观有限元模型,研究其在单轴和三轴压缩荷载下盐岩、泥岩以及界面细观应力应变场分布特征、应力集中问题,并将上述研究与已有的理论和试验成果进行对比。结果表明,运用细观有限元方法预测层状盐岩宏观弹性力学参数是一种直观有效的方法;泥岩和盐岩力学特性上的不匹配导致在层状盐岩的泥岩夹层中以及界面边缘处存在较为明显的应力集中和差异变形。单轴压缩时,泥岩体由于侧向变形能力差会受到横向拉伸应力作用而盐岩层则相应的受到横向压应力作用,三轴压缩时因围压和偏应力大小不同层状盐岩细观应力应变场分布特征则更为复杂;此方法能更为直观的分析层状盐岩的变形和破损特征,这一分析结果对进一步进行层状盐岩体内油(气)储库硐室稳定性分析提供了理论基础。  相似文献   

9.
Salts in the clay playas of China’s arid regions: gone with the wind   总被引:1,自引:0,他引:1  
In China’s arid regions, aeolian salts are transported along with dust aerosols, but their contents and the emission rates are poorly understood. Using samples with undisturbed surfaces and artificially disrupted surfaces (to simulate human disturbances such as reclamation, planting, trampling by animals, and other activities), the transport rates for windblown material and the salt contents of clay playa surfaces were investigated in a wind tunnel. The results showed that under wind velocities ranging from 8 to 22 m/s, wind erosion rates ranged between 0.009 and 0.066 g/m2/s for the undisturbed surfaces and between 0.011 and 0.048 g/m2/s for the artificially disrupted playa surfaces. Although the amount of wind-transported material that was captured was too small to allow an analysis of individual salt contents using the available equipment, electrical conductivity measurements and correlation analysis revealed mean total salt contents of 9.59 g/kg in the transported materials collected above the sealed playa surfaces versus 3.38 g/kg in materials from the same surfaces that were artificially cracked after testing the sealed surfaces. Given the large areas containing clay playas in China’s arid regions, these results will improve our understanding of aeolian salt transport in arid China and will facilitate interpretation of the sources of aeolian salts.  相似文献   

10.
This paper aims at investigating some physical and mechanical characteristics of cemented tailings paste incorporating different amounts of crushed waste rocks (hereinafter called paste aggregate fill, PAF) for underground stope filling. Different mixture formulations were prepared with three classes of crushed waste rocks (or aggregate) grain size, namely 0/10, 0/15 and 0/20 mm. The amount of crushed waste rocks in the PAF mixtures ranges from 10 to 50% by volume (% v/v) (or 8–45% by mass, %m) of dry mill tailings and crushed waste rocks. The results show that the addition of crushed waste rocks in cemented tailings paste mixtures allows a significant unconfined compressive strength (UCS) development after 28 and 90 days of curing. The highest UCS was obtained from the mixtures containing 50% v/v of crushed waste rocks of class of size 0/15 mm. The PAF mixtures with the coarser crushed waste rocks (class of size of 0/20 mm) exhibit some particles segregation.  相似文献   

11.
Collapsible soils are problematic by nature. They undergo collapse or sudden settlement or subsidence under a given stress when their water content is increased. Collapse is characterised by collapse potential expressed as ΔH/H x 100, where ΔH is collapse compression. The amount of stress applied and the water content at the time of collapse govern the amount of collapse. In other words, collapse potential depends upon the amount of stress and the water content. Loess and other wind-blown silts are examples of collapsible soils. This paper presents a parametric study on the collapse behaviour of a lateritic soil. Remoulded specimens of a lateritic soil passing through a 425 µm sieve were compacted in 1-D consolidometer or oedometer at a density of 13 kN/m3 for studying collapse under varied initial moisture contents and initial surcharge pressures. Collapse compression of the samples was induced by saturating the specimens with water contents corresponding to 100% degree of saturation. After collapse occurred, the 1-D consolidation tests were continued up to an applied stress of 160 kPa. Collapse behaviour was studied for the applied initial pressures (σi) of 10, 20 and 40 kPa and for the initial water contents (wi) of 5%, 10%, 15% and 20%. Collapse compression and collapse potential decreased with increasing wi for all σi.  相似文献   

12.
The aim of this study was to assess the influence of pH on copper mobilization in two copper-rich acid soils (from vineyard and mine) amended with crushed mussel shell. Crushed mussel shell amended soils (0–48 Mg ha?1) were subjected to the effect of several acid and alkali solutions in a batch experiment in order to study their copper release. Copper distribution was studied in decanted soils from batch experiments using a sequential extraction procedure, whereas the effect of crushed mussel shell on copper release kinetics was studied using a stirred flow reactor. When soils were treated with acid solutions, the copper mobilization from non-amended soils was significantly higher than from the amended samples. Major changes in copper fractionation were an increase of the acid soluble fraction in acid-treated vineyard soil samples with shell dose. For the mine soil, the oxidable fraction showed a relevant diminution in acid-treated samples at the highest crushed mussel shell dose. For both soils, copper desorption rates diminished up to 86 % at pH 3 when crushed mussel shell was added. At pH 5, copper release rate was very slow for both soils decreasing up to 98 % for the mine soil amended with the highest shell dose, whereas no differences were observed at pH 7 between amended and non-amended soils. Thus, crushed mussel shell addition could contribute to reduce potential hazard of copper-enriched soils under acidification events.  相似文献   

13.
为了揭示在地下水头升降过程中西安市承压含水层的物理及力学性质,采用自行设计的高压渗透固结试验设备模拟西安市承压含水层中细砂高压渗透,研究了在不同竖向压力和孔隙水压力条件下砂柱应变与时间的关系、应力与应变的关系以及砂样的渗透性,同时对比探讨了试验前后砂样微观结构。结果表明:孔隙水压力降低或竖向压力增大时,砂柱发生压缩变形且表现出分段线性的特点;在一定应力范围内,增大孔隙水压力,砂柱变形几乎没有发生回弹或者恢复。根据试验前后颗粒分析曲线、双目镜照相及电镜扫描照片的对比,可以推断砂样在压缩过程中除产生颗粒滑移和位置调整外,部分颗粒被压碎或压裂,由此导致了砂样在地下水头升降过程中颗粒级配发生改变、渗透系数急剧降低以及砂样在不同应力下表现出的分段线性、粘滞性和部分不可恢复等非完全弹性性质。  相似文献   

14.
Remediation of heavy-metal-contaminated sediment is often hampered by the availability of heavy metals to the added chemical agents because the heavy metals are often shielded by the sediment matrix. Effective heavy-metal extraction technique becomes an important factor in enhancing the treatment efficiency. A novel extraction/washing technique utilizing chelating agent and elevated pressure in consecutive cycles of compression and decompression has been developed for heavy-metal-contaminated sediment washing in the presence of chelating agent. In this study, the optimal operational conditions of pressure-assisted cyclic washing of Cu-contaminated sediments (initial Cu concentration = 23.177 mg/kg) were determined in a laboratory-scale system. The control factors included applied pressure level, washing time, applied chelant [ethylenediamine-tertraacetic (EDTA)] concentration (0.01–0.5 M), pressure times, and application of consecutive batches washing. Results from the bench-scale study showed that up to 70 % of Cu can be removed from the sediments when 10 atm of pressure was applied for washing. The efficiency dropped to 55 % when the pressure dropped to 6 atm. Under the same operational conditions, the optimal cyclic washing time was 60 min. Results from the particle size analyses indicate that the mean particle size dropped from 100 to 50 μm after the pressure-assisted cyclic washing. Thus, cyclic pressure caused the fracture of sediment aggregates resulting in the exposure of Cu to chelating agents. With the assistance of pressure cyclic system, the total washing time and the amount of added chemical agent used can be significantly reduced.  相似文献   

15.
Landfills are one of the major sources of methane (CH4) emission which is a very potent greenhouse gas. The use of a natural process for microbial CH4 oxidation through biocovers provides a source reduction of CH4 emission. Previous studies have mostly focused on biochemical properties, and limited research has been conducted with regards to the geotechnical characterization of compost based biocovers. This paper presents the results of a comprehensive laboratory investigation on pure compost and compost–sand mixtures (with mix ratio of 3:1, 1:1, and 1:3 w/w) to determine the compaction, shear strength, compressibility, and hydraulic and thermal conductivity properties of compost based biocovers. Direct shear and ring shear tests have shown that the cohesion (c) and friction angle (?) are in the range of 2.1–19.7 kPa and 44.1°–54.7°, respectively. Based on the results of one dimensional consolidation tests, the coefficient of consolidation (Cv) values are in the range of 1.71–0.63 m2/year, which is a function of the moisture and organic contents of the samples. The lowest hydraulic conductivity ranges from 6.09 × 10?8 to 1.78 × 10?7 cm/s which occur at optimum moisture contents. Thermal conductivity is measured under various porosities and moisture contents. By increasing the dry density and sand content of the mixtures, thermal conductivity increases. The results presented in this paper will contribute to a better understanding of the geotechnical behaviour of compost based biocover, and thus to a more cost-effective design of biocovers.  相似文献   

16.
The study area is located in the southern part of Sinai Peninsula. This study was done to delineate the subsurface structure of the basement rocks affecting the groundwater potentiality in the study area and to perform the lateral and vertical variations in the subsurface lithologic properties. To achieve these, a high-resolution total intensity magnetic map and geo-electrical survey were acquired. Two-dimensional power spectrum, analytical signal, and Euler deconvolution techniques are applied on magnetic data. The geo-electric data interpretations concluded that, the study area can be classified into five units of sediments arranged as: (1) the top surficial layer of dry sand and gravels; (2) the second layer of silty sand layer with thickness ranging from 5 to 35 m; (3) the third layer of dry sand with thickness ranging from 5 to 130 m; (4) the fourth layer composed of saturated sand which was considered as the water-bearing zone of the investigated interval, its thickness ranges between 50m and more than 200 m; (5) the fifth layer is interpreted as basement rocks. The depth to the basement surface has an average value of 156 m at the eastern side and 758 m at the western side of the study area. This area is characterized by a graben structure bounded by major faults striking in the NW–SE direction and is considered one of the most promising regions for water resources in Sinai.  相似文献   

17.
Gypsum is one of the most universally distributed salts in weathered materials but little is known about the influence of environmental conditions on the damage generated by gypsum in stones. To quantify the damage induced by gypsum crystallization acoustic emission techniques are employed to record the elastic energy released during salt crystallization cycles in a limestone. Different environmental conditions have been established during the cooling and drying periods in traditional salt crystallization cycles. During drying two different temperatures (50 and 25 °C) and relative humidity (low, 25 % at 50 °C and 65 % at 25 °C, and high, 99 %) have been applied. The acoustic emission signals are filtered by a frequency analysis in order to eliminate signals corresponding to external noise or artifacts. Our experimental results show that acoustic emission activity is higher under high relative humidity conditions than under low relative humidity conditions, and also higher when drying at 50 °C than at room temperature. Microscopic observations on the weathered samples indicated that under high relative humidity conditions and at room temperature, gypsum crystallizes not on the sample surface, like in the other samples, but deeper in the inner part of the sample, in good agreement with previously published data. We show that using acoustic emissions as usually done in rock mechanics is also very useful in the study of stone decay and weathering processes in the laboratory.  相似文献   

18.
Techniques have been developed to prepare reasonably homogeneous, reproducible bulk samples of a kaolinite clay (Hydrite 10) with predetermined microfabrics and to reliably identify these microfabrics both quantitatively and qualitatively. Eight samples with quite diverse histories were produced in the laboratory by controlling the chemistry of the clay-water system, the consolidation stress path (either isotropic or anisotropic), and the magnitude of the consolidation stresses. The fabrics of these samples are identified and quantified by the combined use of scanning electron microscopy, optical microscopy, and X-ray diffractometry, and reasonably comprehensive appraisals of particle associations and orientation are obtained. Anisotropic consolidation was found to induce a preferred particle orientation, whereas isotropic consolidation tended to provide basically random samples. The anisotropically consolidated samples from dispersed slurries exhibited somewhat greater particle orientation than those from flocculated slurries, and, although considerable particle orientation occurred at low values of the consolidation stress, increases in the major principal consolidation stress did accentuate the particle orientation. The presence of domains or small groups of particles is suggested in certain samples, especially in those consolidated isotropically.  相似文献   

19.
In this study, FLAC finite difference software has been adopted to simulate the performance of the ground improved using prefabricated vertical drains assisted preloading, considering smear zone characteristics. The numerical code has been applied to predict smear zone properties employing a back calculation procedure using the results of several case studies. The construction of a trial embankment is proposed as a reliable method to predict the smear zone characteristics. The proposed back calculation method is applied to estimate the minimum required degree of consolidation and consequently the minimum required preloading time, resulting in a reliable estimation of the smear zone permeability and extent. Three preloading case studies considering both conventional preloading and vacuum assisted preloading have been simulated to verify the numerical code and to conduct the parametric study using the back calculation procedure. According to the results, the properties of the smear zone can be back-calculated reliably, when at least 33 % degree of consolidation due to trial embankment construction is achieved.  相似文献   

20.
H. Cetin   《Engineering Geology》2000,57(3-4):169-178
Special consolidation tests were run on undisturbed samples to study the ability of Quaternary soils adjacent to the Meers fault in southwestern Oklahoma to record and remember the maximum effective (preconsolidation) stresses they experienced during the faulting process. The results show that the soils record >60% of the applied total stresses as preconsolidation stresses in 2 s of loading time, indicating that these stresses could have been recorded during an earthquake faulting event. To record all of the applied total stresses as preconsolidation stresses (100% recording or memory), the loading needs to last at least 4–5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号