首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation (ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie (8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie (8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie (8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature (SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future (the end of the 21st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie (8509) was also estimated in this study.  相似文献   

2.
The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May. The two peaks correspond to the withdrawal and onset of the BoB summer monsoon, respectively. The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency, indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency. Of the four environmental variables (i.e., low-level vorticity, mid-level relative humidity, potential intensity, and vertical wind shear) that enter into the GP index, the potential intensity makes the largest contribution to the bimodal distribution, followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal. The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humid-ity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet wester-lies) dominates the BoB in late spring (autumn).  相似文献   

3.
Typhoon Durian (2001),which formed over the South China Sea (SCS),was simulated by using the Weather Research and Forecasting (WRF) model. The genesis of typhoon Durian which formed in the monsoon trough was reproduced by numerical simulations. The simulated results agree reasonably well with observations. Two numerical experiments in which the sea surface temperature (SST) was either decreased or increased were performed to investigate the impact of the SST on the genesis of the ty-phoon. When the SST was decreased by 5℃ uniformly for all grids in the model,the winds calculated became divergent in the lower troposphere and convergent in the upper troposphere,creating conditions in which the amount of total latent heat release (TLHR) was low and the tropical cyclone (TC) could not be formed. This simulation shows the importance of the convergence in the lower tropo-sphere and the divergence in the upper troposphere for the genesis of the initial vortex. When the SST was increased by 1℃ uni-formly for all grids,a stronger typhoon was generated in the results with an increase of about 10 m s-1 in the maximum surface wind speed. Only minor differences in intensity were noted during the first 54 h in the simulation with the warmer SST,but apparent dif-ferences in intensity occurred after 54 h when the vortex began to strengthen to typhoon strength. This experiment shows that warmer SST will speed the strengthening from tropical storm strength to typhoon strength and increase the maximum intensity reached,while only minor impact can be seen during the earlier stage of genesis before the TC reaches the tropical storm strength. The results sug-gest that the amount of TLHR may be the dominant factor in determining the formation and the intensification of the TC.  相似文献   

4.
As one of the most serious natural disasters, many typhoons affect southeastern China every year. Taking Shenzhen, a coastal city in southeast China as an example, we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis. By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute, China Meteorological Administration(CMASTI), typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen. We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons. In addition, the Yan Meng(YM) wind field model was introduced, and the sensitivity of the YM model to several parameters discussed. Using the YM wind field model, extreme wind speeds were extracted from the virtual typhoons. The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.  相似文献   

5.
There are obvious periodic oscillations in the observations of storm surges in the East China Sea. The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affected by the interaction between astronomical tides and storm surges. In the present paper we simulate the interaction between tides and storm surges by using a two dimensional numerical model. In our numerical experiments we use the data of the storm surge induced by Typhoon 8114. The calculations tally with the measured data well. The results indicate that the periodic oscillations occurring in the elevations of the surge are mainly caused by the interaction between the tide and the storm surge. The numerical experiments also indicate that the forecasting precision may be notably improved if the nonlinear interaction between tides and storm surges is taken into account.  相似文献   

6.
The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea Surface Temperature (SST) data, the reanalysis data of monthly grid wind field at 925 hPa with a resolution of 2.5^* latitude and longitude from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), and the monthly mean rainfall data from 160 observational stations in China. The results show that there is a strong correlation between the EIWP variability and the spring precipitation in China. The area, volume and intensity indices of the EIWP are negatively correlated with the spring precipitation in southwestern China, while they are positively correlated with the spring precipitation in the rest of China, especially in the northeast. For this correlation between the EIWP variability and the spring precipitation in China, it is found that the correlative relationship is mainly connected with the variations of the moisture transport by the warm air flow, which is under the influence of the EIWP variability, into the inland of China in spring. Two causative factors may influence this transport. One is the variation of the moisture transport carried by the warm air flow from the Arabian Sea influenced by the EIWP variability. The other is the variation of the equator-crossing flow (70^*-90^*E) influenced by the EIWP anomaly in the previous winter which exerts its effect on the moist warm air transported from the Southern Hemisphere. The position and intensity of the Western North Pacific Subtropical High (WNPSH) variability caused by EIWP variation also influence the spring precipitation in China.  相似文献   

7.
Various satellite data, JRA-25 (Japan reanalysis of 25 years) reanalyzed data and WRF (Weather Research Forecast) model are used to investigate the in situ effect of the ESKF (East China Sea Kuroshio Front) on the MABL (marine atmospheric boundary layer). The intensity of the ESKF is most robust from January to April in its annual cycle. The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL. The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree. The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST (sea surface temperature) gradient. The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field. The clouds develop higher (lower) in the warm (cold) flank of the ESKF due to the less (more) stable stratification in the MABL. The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion. The numerical experiments with smoothed SST are consistent with the results from the ovservations.  相似文献   

8.
1INTRODUCTIONSummer precipitation in China is a phenomenon hap-pening in the south-north oscillation process of the EastAsian summermonsoon, andthe monsoon is in essenceresulted from the joint effects of the planetary scale cir-culation ofthermal convecti…  相似文献   

9.
《山地科学学报》2020,17(7):1696-1711
Based on the precipitation data observed by stations and data simulated by 23 CMIP5 models, the features and future changes of summer(Jun-JulAug) extreme precipitation events in Sichuan Province of China were analysed. We found that the total precipitation(RSum), extreme precipitation threshold(Threshold90), extreme precipitation(TR90), extreme precipitation percentage(TR90 pct) and extreme precipitation intensity(TR90 str) decreased from the southeast to the northwest in Sichuan Province, reflecting the differences between eastern Sichuan(ESC, basins) and western Sichuan(WSC, mountains). Compared with the observations, most of the CMIP5 models showed that there were wet biases in WSC and an unclear bias pattern in ESC for the RSum, Threshold90, TR90, and TR90 str. However, the extreme precipitation days(ND90) and TR90 pct values simulated by the models were generally overestimated and underestimated,respectively. Compared with the historical period, most models showed obvious increases in the TR90 and TR90 pct in the 21 century, while the characteristics of Rsum, ND90, and TR90 str were inconspicuous. Compared with the mid-21 st century, the extreme precipitation in the late-21 st century exhibited a certain degree of increase. Even during the same period, the results of RCP8.5 were higher than those of RCP4.5, especially for the ND90, TR90, and TR90 pct.  相似文献   

10.
选取广东省86个气象观测站的观测资料,采用气候趋势分析和通径分析方法,对广东省1961~2003年小型蒸发皿蒸发量及其相关气象影响因子进行了分析。结果表明:虽然汛期广东省整体平均蒸发量呈下降趋势,前汛期、后汛期线性倾向率分别为-15.86 mm/10a和-13.79 mm/10a;但变化趋势在广东省内空间分布并不均匀,前汛期、后汛期粤东、中部部分地区分别有16、12个站呈上升趋势;前汛期6种气象因子单独对蒸发的决定程度按大小依次为:日照时数>气温>风速>降水>饱和差>气温日较差,后汛期6种气象因子单独对蒸发的决定程度按大小依次为:日照时数>降水>饱和差>风速>气温>气温日较差,整个汛期日照时数与其它各要素的协同作用对蒸发皿蒸发量的决定作用都很大。日照时数和风速总体上的下降是导致广东省汛期蒸发皿蒸发量逐年减少的重要原因。  相似文献   

11.
The temporal variations in the frequency of tropical cyclones (TCs) traversing the Taiwan and Hainan Islands (TH islands), were analyzed using a best-track TC dataset from the Joint Typhoon Warning Center for the period 1945-2007. Results show that the oscillations were interannual and interdecadal on the timescales of 2-8 and 8-12 years, respectively. It is also shown that the number of TCs formed in the western North Pacific basin (WNP) and of those traversing the TH islands varied intraseasonally. These results also held for typhoons traversing the TH islands, although the oscillations were less apparent. This study identified interrelationships between the frequency of TCs making landfall on the TH islands and the East Asia summer monsoon (EASM), the South Asia summer monsoon (SASM), and the South China Sea summer monsoon (SCSSM). The SCSSM significantly influenced the number of TCs traversing Hainan Island, but had little influence on the number of TCs traversing Taiwan Island. By contrast, the SASM influenced the numbers of TCs traversing both of the TH islands, shown by correlation coefficients of 0.41 for Taiwan Island and -0.25 for Hainan Island. In addition, the frequency of TC landfall on Taiwan Island increased during years of enhanced EASM, as indicated by a correlation coefficient of 0.4.  相似文献   

12.
Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km~2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.  相似文献   

13.
Trends in temperature and precipitation extremes from 1961 to 2008 have been investigated over Circum-Bohai-Sea region,China using daily temperature and precipitation data of 63 meteorological stations.The re-sults show that at most stations,there is a significant increase in the annual frequency of warm days and warm nights,as well as a significant decrease in the annual frequency of cold days,cold nights,frost days,and annual diurnal temperature range(DTR).Their regional averaged changes are 2.06 d/10yr,3.95 d/10yr,-1.88 d/10yr,-4.27 d/10yr,-4.21 d/10yr and-0.20℃/10yr,respectively.Seasonal changes display similar patterns to the annual results,but there is a large seasonal difference.A significant warming trend is detected at both annual and seasonal scales,which is more contributed by changes of indices defined by daily minimum temperature than those defined by daily maximum tem-perature.For precipitation indices,the regional annual extreme precipitation displays a weak decrease in terms of magnitude and frequency,i.e.extreme precipitation days(RD95p),intensity(RINTEN),proportion(RPROP) and maximum consecutive wet days(CWD),but a slight increase in the maximum consecutive dry days(CDD),which are consistent with changes of annual total precipitation(PRCPTOT).Seasonally,PRCPTOT and RD95p both exhibit an increase in spring and a decrease in other seasons with the largest decrease in summer,but generally not significant.In summary,this study shows a pronounced warming tendency at the less rainy period over Circum-Bohai-Sea region,which may affect regional economic development and ecological protection to some extent.  相似文献   

14.
对典型的地震预警与烈度速报方法进行分析,提出了基于非对称传感器的地震预警与烈度速报综合用烈度仪,其由非对称结构的三分量传感器和基于ARM嵌入式系统的专用数据采集器组成。经过测试,该地震烈度仪的专用数据采集器具有大于107 dB的动态范围;其非对称三分量传感器结构中,所选的单分量B类传感器的加速度误差小于0.8%,动态范围大于105 dB,而所选的三分量C类传感器的加速度误差小于5%,动态范围大于61 dB。该地震烈度仪的各项指标均满足地震预警与烈度速报综合应用的各项技术要求,且功耗低、成本低,适合于高密度布设。  相似文献   

15.
The effect of the drag coefficient on a typhoon wave model is investigated. Drag coefficients for Pingtan Island are derived from the progress of nine typhoons using COARE 3.0 software. The wind parameters are obtained using the Weather Research and Forecasting model. The simulation of wind agrees well with observations. Typhoon wave fields are then simulated using the third-generation wave model SWAN. The wave model includes exponential and linear growths of the wind input, which determine the wave-growth mode. A triple triangular mesh is adopted with spatial resolution as fine as 100 m nearshore. The SWAN model performs better when using the new drag coefficient rather than the original coefficient.  相似文献   

16.
The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake (Ms8.0) and the 2013 Minxian-Zhangxian earthquake (Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification may increase seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.  相似文献   

17.
为了研究云中微物理量与台风降水的关系,选取0908号台风"莫拉克"作为个例,利用中国自主研发的全球区域同化预报系统对台风引起的暴雨过程进行了数值模拟。该模式系统中包含有详细的云微物理过程。结合TRMM卫星资料、MODIS云顶温度资料、FY-2卫星云图以及常规地面观测等资料与模式结果进行对比分析。分析结果表明,此次强降水主要发生在福建大部分地区以及浙江东南部地区,模拟6小时累积降水最大值超过90m,模式对此次暴雨的雨带位置及其走向都有较好的模拟。台风中云微物理量的垂直分布基本可以分为3层,由冰晶与雪组成的冰相层,一般位于100~400hPa;由云水和雨水组成的液相层,一般位于600hPa之下,以及由霰与云水、雨水形成的混合层,主要分布在400~600hPa。霰在暖区的融化以及云水、雨水的碰并是降水的主要来源。  相似文献   

18.
This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years of three super El Ni?o events(1982,1997,and 2015)based on observations and numerical simulations.During the super El Ni?o years,TC intensity was enhanced considerably,TC days increased,TC tracks mostly recurved along the coasts,and fewer TCs made landfall in China.These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Ni?o years.It indicates that super El Ni?o events play a dominant role in the intensities and tracks of WNP TCs.However,there were clear differences in both numbers and positions of TC genesis among the different super El Ni?o years.These features could be attributed to the collective impact of SST anomalies(SSTAs)in the tropical central-eastern Pacific and East Indian Ocean(EIO)and the SST gradient(SSTG)between the southwestern Pacific and the western Pacific warm pool.During 2015,the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced,resulting in fewer TCs than normal.In 1982,the EIO SSTA and spring SSTG showed negative anomalies,followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear.This intensified the conversion of eddy kinetic energy from large-scale flows,favorable for the westward shift of TC genesis.Consequently,anomalous TC activities during the super El Ni?o years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.  相似文献   

19.
采用天气学、动力诊断等方法对2010年7月陕西出现两次大暴雨过程综合分析。目的在于揭示近海台风活动对陕西区域性暴雨作用和影响,结果表明:近海台风活动是影响造成两次大暴雨的一个关键因子。两次暴雨的水汽输送均由登陆后的台风低压环流东侧的偏南急流来实现,且以700hPa表现最为显著。前一次暴雨过程中热力条件和高层抽吸对增强上升运动和对流作用明显。后一次暴雨过程是因持续、深厚和稳定少动的河套低压自身不断发展加深的作用,加剧了上升运动发展,其上升运动区与暴雨区吻合较好。  相似文献   

20.
The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号