首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new mechanism of cleaving-healing of garnet in metamorphic rocks during exhumation is reported. Almandine garnet with submicron multiple-phase inclusions characteristic of the GRAIL reaction, garnet + rutile = kyanite + ilmenite + low-quartz, was found by analytical electron microscopy to have non-epitaxial rutile nanoparticles distributed along internal {110} microcrack trails at the acute corner of submicron multiple-phase inclusions defined by the intersecting (110) and (011) mould surfaces. Such garnet microcracks were formed during lithostatic decompression due to a relatively high compressibility of quartz in the inclusion pockets and stress concentration at the acute corner. Spontaneous healing with accompanied formation of non-epitaxial rutile nanoparticles was activated predominantly via the GRAIL reaction due to high surface tension at the tip of microcracks and, to a lesser extent, decreasing lithostatic pressure or increasing inclusion pressure upon exhumation. This new mechanism of microcracking and healing involves stress build up, fracture propagation, mineral reaction, transport of elements to the reaction site and lowering of reaction boundaries by capillarity effect, all under the influence of thermodynamic and kinetic factors at the submicron-scale. Thus, TiO2 nanoparticle trails in garnet provide additional information on the P–T path and may shed light on exhumation rates/mechanisms and metamorphic reactions/processes. Careful scrutiny of host minerals on the submicron scale is required to tell whether there are other metamorphic-reaction facilitated healing processes being overlooked by inappropriate techniques or being obliterated by the predominant healing processes of fluid infiltration and resorption zoning.  相似文献   

2.
Oxygen‐isotope compositions of kyanite, andalusite, prismatic sillimanite and fibrolite from the Proterozoic terrane in the Truchas Mountains, New Mexico differ from one another, suggesting that these minerals did not grow in equilibrium at the Al2SiO5 (AS) polymorph‐invariant point as previously suggested. Instead, oxygen‐isotope temperature estimates indicate that growth of kyanite, andalusite and prismatic sillimanite occurred at c. 575, 615 and 640 °C respectively. Temperature estimates reported in this paper are interpreted as those of growth for the different AS polymorphs, which are not necessarily the same as peak metamorphic temperatures for this terrane. Two distinct temperature estimates of c. 580 °C and c. 700 °C are calculated for most fibrolite samples, with two samples yielding clear evidence of quartz‐fibrolite oxygen‐isotope disequilibrium. These data indicate that locally, and potentially regionally, oxygen‐isotope disequilibrium between quartz and fibrolite may have resulted from rapid fibrolite nucleation. Pressures of mineral growth that were extrapolated from oxygen‐isotope thermometry results and calculated using petrological constraints suggest that kyanite and one generation of fibrolite grew during M1 at 5 kbar, and that andalusite, prismatic sillimanite and a second generation of fibrolite grew during M2 at 3.5 kbar. M1 and M2 therefore represent two distinct metamorphic events that occurred at different crustal levels. The ability of the AS polymorphs to retain δ18O values of crystallization make these minerals ideal to model prograde‐growth histories of mineral assemblages in metamorphic terranes and to understand more clearly the pressure–temperature histories of multiple metamorphic events.  相似文献   

3.
Oxygen isotope analyses of quartz-Al2SiO5 pairs have been made for samples from the Mica Creek area, British Columbia. We have analysed quartz–kyanite nodules and quartz–kyanite and quartz–sillimanite in multiphase pelitic rocks from the staurolite–kyanite, kyanite, and sillimanite zones. Apparent temperatures calculated from oxygen isotopic fractionation range from 555 °C (staurolite–kyanite zone) to 695 °C (sillimanite zone). Temperatures from the quartz–kyanite nodules range from 630 to 675 °C. Some of the nodules show isotopic disequilibrium. Most of the results confirm predictions that bimineralic rocks will yield an estimate of peak metamorphic temperatures, when the less abundant mineral (an aluminium silicate) is the slower oxygen diffuser. Using cooling rates of 10–100 °C Ma?1 for the multiphase rocks, measured crystal sizes and modes, the Fast Grain Boundary diffusion model with ‘wet’ diffusion data (PH2O?1.0 kbar) yields predicted apparent temperatures which are generally lower than the measured apparent temperatures. The agreement is improved if slower diffusion coefficients are used. This suggests that f (H2O) during cooling was lower than that of the hydrothermal experiments and thus that there was little interaction with aqueous fluids of internal or external origin to modify the isotopic compositions. The measured apparent isotopic temperatures and apparent garnet–biotite Fe–Mg exchange temperatures show very poor agreement for the sillimanite zone samples, with the garnet–biotite Fe–Mg exchange temperatures generally higher than the oxygen isotope temperatures. Compared with the other calibrations that we tested the measured apparent temperatures using the Sharp calibration show the best agreeement with recently published P–T grids, although some variability in agreement is expected due to variable f (H2O) during cooling.  相似文献   

4.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   

5.
Previous studies suggest that the metamorphic evolution of the ultrahigh‐pressure garnet peridotite from Alpe Arami was characterized by rapid subduction to a depth of c. 180 km with partial chemical equilibration at c. 5.9 Gpa/1180 °C and an initial stage of near‐isothermal decompression followed by enhanced cooling. In this study, average cooling rates were constrained by diffusion modelling on retrograde Fe–Mg zonation profiles across garnet porphyroclasts. Considering the effects of temperature, pressure and garnet bulk composition on the Fe–Mg interdiffusion coefficient, cooling rates of 380–1600 °C Myr?1 for the interval from 1180 to 800 °C were obtained. Similar or even higher average cooling rates resulted from thermal modelling, whereby the characteristics of the calculated temperature‐time path depend on the shape and size of the hot peridotite body and the boundary conditions of the cooling process. The very high cooling rates obtained from both geospeedometry and thermal modelling imply extremely fast exhumation rates of c. 15 mm yr?1 or more. These results agree with the range of exhumation rates (16–50 mm yr?1) deduced from geochronological results. It is suggested that the Alpe Arami peridotite passively returned towards the surface as part of a buoyant sliver, caused as a consequence of slab breakoff.  相似文献   

6.
The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one‐dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures >580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite‐in isograd is coincident with the staurolite‐out isograd in pelitic schist, and K‐feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite‐bearing pelitic schist. Muscovite‐rich aluminous schist locally preserves the Al2SiO5 polymorph triple‐point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co‐nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K‐feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (<500 °C).  相似文献   

7.
Regularly oriented orthopyroxene (opx) and forsterite (fo) inclusions occur as opx + rutile (rt) or fo + rt inclusion domains in garnet (grt) from Otrøy peridotite. Electron diffraction characterization shows that forsterite inclusions do not have any specific crystallographic orientation relationships (COR) with the garnet host. In contrast, orthopyroxene inclusions have two sets of COR, that is, COR‐I: <111>grt//<001>opx and {110}grt~//~{100}opx (~13° off) and COR‐II: <111>grt//<011>opx and {110}grt~//~{100}opx (~14° off), in four garnet grains analysed. Both variants of orthopyroxene have a blade‐like habit with one pair of broad crystal faces parallel/sub‐parallel to {110}grt plane and the long axis of the crystal, <001>opx for COR‐I and <011>opx for COR‐II, along <111>grt direction. Whereas the lack of specific COR between forsterite and garnet, along with the presence of abundant infiltrating trails/veinlets decorated by fo + rt at garnet edges, provide compelling evidence for the formation of forsterite inclusions in garnet through the sequential cleaving–infiltrating–precipitating–healing process at low temperatures, the origin of the epitaxial orthopyroxene inclusions in garnet is not so obvious. In this connection, the reported COR, the crystal habit and the crystal growth energetics of the exsolved orthopyroxene in relict majoritic garnet were reviewed/clarified. The exsolved orthopyroxene in a relict majoritic garnet follows COR‐III: {112}grt//{100}opx and <111>grt//<001>opx. Based on the detailed trace analysis on published SEM images, these exsolved orthopyroxene inclusions are shown to have the crystal habit with one pair of broad crystal faces parallel to {112}grt//{100}opx and the long crystal axis along <111>grt//<001>opx. Such a crystal habit can be rationalized by the differences in oxygen sub‐lattices of both structures and represents the energetically favoured crystal shape of orthopyroxene inclusions in garnet formed by solid‐state exsolution mechanism. Considering the very different COR, crystal habit, as well as crystal growth direction, the orthopyroxene inclusions in garnet of the present sample most likely had been formed by mechanism(s) other than solid‐state exsolution, regardless of their regularly oriented appearance in garnet and the COR specification between orthopyroxene and garnet. In fact, the crystallographic characteristics of orthopyroxene and the similar chemical compositions of garnet at opx + rt inclusion domains, fo + rt inclusion domains/trails and garnet rim suggest that the orthopyroxene inclusions in the garnet are most likely formed by similar cleaving‐infiltration process as forsterite inclusions, though probably at an earlier stage of metamorphism. This work demonstrates that the oriented inclusions in host minerals, with or without specific COR, can arise from mechanism(s) other than solid‐state exsolution. Caution is thus needed in the interpretation of such COR, so that an erroneous identification of exhumation from UHP depths would not be made.  相似文献   

8.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   

9.
Eclogite facies metarodingites occur as deformed dykes in serpentinites of the Zermatt‐Saas ophiolite (Western Alps). They formed during the subduction of the Tethys oceanic lithosphere in the Early Tertiary. The metarodingites developed as a consequence of serpentinization of the oceanic mantle. Three major types of metarodingites (R1, R2 & R3) can be distinguished on the basis of their mineralogical composition. All metarodingites contain vesuvianite, chlorite and hydrogrossular in high modal amounts. In addition they contain: R1 – diopside, tremolite, clinozoisite, calcite; R2 – hydroandradite, diopside, epidote, calcite; and R3 – hydroandradite. Both garnets contain a small but persistent amount of hydrogarnet component. The different metarodingites reflect different original dyke rocks in the mantle. In each group of metarodingite, textural relations suggest that reactions adjusted the assemblages along the P–T path travelled by the ophiolite during subduction and exhumation. Reactions and phase relations derived from local textures in metarodingite can be modelled in the eight‐component system: SiO2‐Al2O3‐Fe2O3‐FeO‐MgO‐CaO‐CO2‐H2O. This permits the analysis of redox reactions in the presence of andradite garnet and epidote in many of the rocks. Within this system, the phase relations in eclogite facies metarodingites have been explored in terms of TXCO2, T–μ(SiO2), μ(Cal)–μ(SiO2) and P–T sections. It was found that rodingite assemblages are characterized by low μ(SiO2) and low XCO2 conditions. The low SiO2 potential is externally imposed onto the rodingites by the large volume of antigorite‐forsterite serpentinites enclosing them. Moreover, μ(SiO2) decreases consistently from metarodingite R1 to R3. The low μ(SiO2) enforced by the serpentinites favours the formation of hydrogarnet and vesuvianite. Rodingite formation is commonly associated with hydrothermal alteration of oceanic lithosphere at the ocean floor, in particular to ocean floor serpentinization. Our analysis, however, suggests that the metarodingite assemblages may have formed at high‐pressure conditions in the subduction zone as a result of serpentinization of oceanic mantle by subduction zone fluids.  相似文献   

10.
11.
12.
N2-CH4(CO2)混合气体在线标样制备及其拉曼定量因子测定   总被引:1,自引:1,他引:0  
利用混合气体的标准样品对激光拉曼探针进行标定,可以快速准确地对包裹体中的无机及有机气相组分进行定量分析。而常用的商用钢瓶装混合气体标样,存在费用高、气体组成单一固定等缺点。本文设计了一套在线标样制备装置,提出一种在线配置不同浓度和压力条件下混合气体标样的方法。利用高纯度(纯度99.999%)的N2、CH4以及CO2钢瓶气,经过在线混合增压,在5 MPa和10 MPa条件下制备了N2摩尔分数为30%、50%和70%的N2-CH4以及N2-CO2混合气体在线标样。该方法制备的标样与70%N2+30%CO2的商用钢瓶气标样对比表明,CO2与N2的拉曼相对峰高以及相对峰面积值的误差在4%以内,具有较高的准确度和重现性。通过不同压力和浓度条件下CH4以及CO2的拉曼相对定量因子测定表明,气体的相对定量因子在5~10 MPa压力条件下与压力及组成无关。地质样品应用结果表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,为激光拉曼标定、气体组成原位测量等提供了一种新的技术思路。  相似文献   

13.
One petrogenetic grid for plagioclase-, spinel- and garnet-lherzolite analogues in the system CaO-MgO-Al2O3-SiO2 is presented from 1 bar to 30 kbar and 400 to 1500°C. Another grid for olivine-gabbro, spinel-gabbro and garnet-pyroxenite analogues in the same system is presented from 1 bar to 25 kbar and 500 to 1500°C. Both grids show the distribution of the mineral assemblages and the variations in the composition of clinopyroxene with temperature and pressure. They were developed by applying simple thermodynamic mixing models of clinopyroxene to experimentally determined clino-pyroxene compositions.Calcium tschermak's pyroxene (CaAl2SiO6) in complex CaMgSi2O6-CaAl2SiO6-Mg2Si2O6 clinopyroxenes is best represented by a local charge balance mixing model where aCaAl2SiO6? (XCaM2)(XAlM1) Enthalpy and entropy changes of subsolidus reactions involving variations in the CaAl2SiO6 and Mg2Si2O6 content of clinopyroxene are interdependent due to nonideal mixing of these two end-members. CaAl2SiO6 can strongly reduce the mutual solubility of clinopyroxene and orthopyroxene at moderate pressures and high temperatures. Failure to take this into account can result in temperature underestimates (up to 150°C) of spinel-lherzolites, garnet-pyroxenites, low pressure garnet-lherzolites, spinel-gabbros, and high pressure plagioclase-lherzolites and olivine-gabbros. However, at temperatures and pressures where the Al2O3 content of clinopyroxene is low (e.g. garnet-lherzolite nodules in kimberlite), the mutual solubility is adequantely represented by experimental results in the system CaO-MgO-SiO2.  相似文献   

14.
Refinements have been made to achieve over 99% yield in the conversion of CO to CO2 in order to improve the reproducibility and accuracy of δ18 O measurements in sulfates. BaSO4 (10-15 mg) was mixed with an identical amount of spectrographic-grade graphite and loaded into a Pt boat. The mixture was gradually heated to 1100 °C to reduce sulfate to CO and CO2; the former gas was simultaneously converted to CO2 by a glow discharge between Pt electrodes immersed in a magnetic field (produced by a pair of external neodymium magnets). A small memory effect was noticed during the analysis (less than 0.3‰ per 10‰ difference in δ18 O between two subsequently analysed samples). The memory effect, however, was suppressed by repetitive preparation of the same specimen. CO2 produced in this way from sulfate reference samples was analysed on a dual inlet and triple collector mass spectrometer along with CO2 equilibrated with VSMOW, GISP and SLAP water reference samples. To avoid large departures of measured isotope ratios from 18O/16O of the working calibrator we used CO2 gas prepared from ocean water sulfate for this purpose. The calibrated δ18 O values (in ‰) obtained in this way for NBS-127, IAEA SO-5 and IAEA SO-6 reference materials were 8.73 ± 0.05, 12.20 ± 0.07 and -10.43 ± 0.12, respectively.  相似文献   

15.
Abstract Phase relations and mineral chemistry for garnet (Grt), orthopyroxene (Opx), sapphirine (Spr), water-undersaturated cordierite (Crd), osumilite (Osu), sillimanite (Sil), K-feldspar (Kfs), quartz (Qtz) and a water-undersaturated liquid (Liq) have been determined experimentally in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) under low PH2O and fO2 conditions. Four compositions have been studied with 100 [Mg/(Mg + Fe)] ranging from 65.6 to 89.7. Based on our experimental data, a P-T grid is derived for the KFMASH system in the presence of quartz, orthopyroxene and liquid. Osumilite has been found in various mineral assemblages from 950 to 1100°C and 7.5 to 11 kbar. In the temperature range 1000-1100°C, the pair Os-Grt is stable over a pressure range of about 3kbar. The divariant reaction Os + Opx = Grt + Kfs + Qtz runs to the right with increasing pressure. Because osumilite is the most magnesian phase it is restricted to Mg-rich compositions at high pressure. The reaction defining the upper pressure stability limit of Os-Grt is located around 11 kbar with a nearly flat dP/dT slope over the temperature range 950–100°C. Over the entire temperature range investigated osumilite is not stable beyond 12 kbar. The data imply a restricted pressure range between 11 and 12 kbar for the stability of the assemblage Os-Opx-Sil-Kfs-Qtz. At 1050°C and above, osumilite occurs in various mineral assemblages together with the high-T pair Spr-Qtz. When coexisting with garnet, orthopyroxene or sapphirine, osumilite is always the most magnesian phase. At 1050 and 1100°C, liquid is invariably the most Fe-rich phase in the run product. Our data support a theoretical P-T grid for the KFMAS system in which osumilite is stable outside the field of the high-T assemblage Spr-Qtz. Moreover, our grid indicates that Os-Opx-Sil-Kfs-Qtz has a more restricted pressure and compositional stability domain than Os-Grt, in agreement with natural occurrences. Osumilite is stable over a large pressure range, such that in Mg-rich rocks, and at high temperature, it can occur at any depth in normal thickness continental crust.  相似文献   

16.
Abstract. This study examined the effect of CO2 on NaCl solubility in hydrothermal fluid, with the synthetic fluid inclusion technique. Fluid inclusions of 30–40 wt% NaCl and 5 mol % CO2 were synthesized, and their halite dissolution temperatures, Tm(halite), were measured. The solubilities of NaCl in CO2-bearing aqueous fluid were obtained at 160–320C under vapor-saturated pressures. The Tm(halite) value in aqueous fluid with 5 mol % CO2 obtained in this study agrees with that of Schmidt et al. (1995), showing that 5 mol % CO2 reduces the solubility of NaCl by about 1 wt%.
Calculation of magnetite solubility suggests that 5–10 mol % CO2 decreases magnetite solubility by 4.5–8.9 % relative to the magnetite solubility in CO2-free solution. Therefore, an increase of CO2 content in ore-forming solutions may cause deposition of iron minerals and produce ore deposits.  相似文献   

17.
Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T-O-T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.  相似文献   

18.
Four natural gypsum rock samples were prepared and certified for major elements and some trace elements by the Analytical Group of Domtar Inc., Research Centre in Senneville (Montréal), Québec, Canada with the cooperation of Domtar Gypsum Products Laboratory in Caledonia, Ontario, Canada. The analytical round-robin results received from 29 participating laboratories were statistically evaluated, summarized, and form the basis of this paper. These certified reference materials are primarily intended as calibration standards for the determination of major and minor elements in gypsums and gypsum related minerals and products. As certified gypsum rock samples were not available on the North-American or world markets, these may be particularly important not only to the gypsum and cement industries, but also to geochemists, geologists and analysts of minerals and ores.  相似文献   

19.
The distribution of barium and other elements related to biological productivity has been studied in two Palaeocene sections from the Middle East. In the bathyal Ben Gurion section, Israel, Ba* (= Ba/Al2O3× 15%) concentrations are low, in the range 0.04% to 0.3% in the lower Palaeocene, and very high, 1% to 2%, throughout most of the upper Palaeocene. In the neritic Gebel Aweina section in Egypt Ba* values are low, < 0.1%, throughout the entire Palaeocene. The Ba* enrichments at Ben Gurion and their correlations with increases in P2O5 and opaline silica, and local and global δ13C maxima, indicate that upwelling and high productivity were important in this region during the late Palaeocene. The absence of Ba* enrichments in the shallower Gebel Aweina section probably reflects the strong depth dependence of biobarium deposition. In the uppermost Palaeocene, at the level where the global benthic extinction event is registered, Ba* concentrations in the Ben Gurion section increase to anomalous 6%. which suggests that upwelling and possibly wind strengths intensified during this event. The results speak against deep-water formation in this region since downwelling and not upwelling is required.  相似文献   

20.
Calorimetric measurements of fusion enthalpies for Ni2SiO4 and Co2SiO4 olivines were carried out using a high-temperature calorimeter, and Ni and Co partitioning between olivine and silicate liquid was analyzed using the measured heats of fusion. The fusion enthalpy of Co2SiO4 olivine measured by transposed-temperature drop calorimetry was 103 ± 15 kJ/mol at melting point (1688 K). The fusion enthalpy of Ni2SiO4 olivine was calculated based on the enthalpies of liquids in the system An50Di50-Ni2SiO4 measured by transposed-temperature drop calorimetry at 1773 K, and was 221 ± 26 kJ/mol at its metastable melting point (1923 K). The fusion enthalpy of Ni2SiO4 is the largest among those of olivine group, this is caused by the large crystal field stabilization energy of six-coordinated Ni2+ in olivine. The larger fusion enthalpy of Ni2SiO4 can account for the large and variable partition coefficient of Ni between olivine and silicate liquid. Based on the comparison between partition coefficients calculated from thermodynamic data and those observed in partition experiments, it is considered that the magnitude of partition coefficients is primarily dependent on the heats of fusion of the components. Furthermore, the activity coefficients for Ni-, Co- and Mn-bearing components in magmatic liquid are nearly of the same magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号