共查询到17条相似文献,搜索用时 78 毫秒
1.
提出了一种低空无人机(unmanned aerial vehicle,UAV)序列影像与激光点云自动配准的方法。首先分别基于多标记点过程与局部显著区域检测对激光点云和序列影像的建筑物顶部轮廓进行提取,并依据反投影临近性匹配提取的顶面特征。然后利用匹配的建筑物角点对,线性解算序列影像外方位元素,再使用建筑物边线对的共面条件进行条件平差获得优化解。最后,为消除错误提取与匹配特征对整体配准结果的影响,使用多视立体密集匹配点集与激光点集进行带相对运动阈值约束的ICP(迭代最临近点)计算,整体优化序列影像外方位元素解。试验结果表明本文方法能实现低空序列影像与激光点云像素级精度的自动配准,联合制作DOM精度满足现行无人机产品1∶500比例尺标准。 相似文献
2.
提出一种车载移动测量系统(MMS)激光点云与序列全景影像自动配准方法。首先采用层次化城市场景目标提取方法自激光点云提取天际线矢量,在全景影像中经虚拟成像与分割角点提取算法生成天际线矢量。然后,将提取结果作为几何配准基元,构建配准基元图,通过最小化配准基元图编辑距离进行匹配,组成共轭配准基元对,解算2D-3D粗配准模型,获得全景影像与LiDAR点云参考坐标系之间的初始转换关系。最后,为消除几何配准基元提取与匹配误差对配准结果的影响,自序列全景影像虚拟成像影像生成多视立体密集匹配点云,继而使用变种ICP算法优化其与激光点云数据间3D-3D配准参数,间接优化全景影像与激光点云间的配准参数,精化配准结果。试验结果表明,本文提出的自动配准方法可以实现车载MMS激光点云与序列全景影像的1.5像素级自动配准,配准成果可应用于真彩色点云生成等点云/影像数据融合应用。 相似文献
3.
4.
5.
6.
针对激光点云与影像配准数据量大、质量差的问题,本文提出一种基于三维尺度不变特征变换(3D-SIFT)与尺度迭代最近点算法(SICP)相结合的激光点云与影像配准方法。首先使用运动恢复结构(SfM)方法将影像通过光束法平差生成影像三维点云,然后使用3D-SIFT提取激光点云与影像三维点云中的特征点,接着利用对偶四元数求解激光点云和影像三维点云的初始变换矩阵,实现两种点云数据的粗配准;最后利用SICP算法实现两种点云数据的精配准。实验结果表明,本文方法获取的激光点云与影像配准中误差为0.24 cm,配准时间为69 s,且与选代最近点算法(ICP)相比提高了配准精度和配准效率。 相似文献
7.
车载全景影像与激光点云数据配准方法研究 总被引:1,自引:0,他引:1
全景影像与激光点云的高精度配准是车载移动测量系统中多传感器数据集成处理的关键环节。本文针对车载多面阵拼接全景影像与激光点云的配准问题, 提出了一套高精度的数据配准方法。通过高密度的静态激光点云解算每个面阵CCD在激光扫描仪坐标系下的外标定参数, 以实现单张CCD影像与激光点云在扫描仪坐标系下的配准, 在全景拼接过程中全景影像与单张CCD影像精确的映射关系已知, 利用扫描仪坐标系、POS坐标系及WGS-84坐标系间的转换关系即可获得全景影像与激光点云在物方坐标系下的动态、高精度的配准参数。试验表明该数据配准方法精确可靠、适用性强, 能满足基于全景影像与激光点云数据融合的城市道路竣工、部件采集、目标提取、三维重建等高精度量测应用需求。 相似文献
8.
针对地面激光雷达点云和数码光学影像非同源异质数据自动配准困难的问题,本文提出了基于互信息的两种数据同名特征高精度自动提取的方法。首先,把点云数据生成中心平面投影的反射强度图像和基于RGB信息的彩色图像,应用点云彩色图像和数码光学影像的匹配,确定点云与影像的粗配准参数;然后,对反射强度图像进行特征提取,应用粗配准参数确定其在数码光学影像上的初始位置,应用互信息实现非同源数据的高精度匹配;最后,应用罗德里格矩阵和选权迭代方法计算高精度配准参数,生成三维彩色模型。试验证明,本文方法可以解决地面激光点云和数码光学影像非同源异质数据的配准问题,具有一定的研究和应用价值。 相似文献
9.
卫星影像可以低成本、高频率地提供地物光谱特性观测信息,而激光点云可以提供精细的几何结构,两类数据的融合可以实现优势互补,进一步提高地物分类和信息提取的精度和自动化程度。实现亚像素级精度的几何配准是实现两类数据融合的前提,提出了一种基于线元素距离变换模型的快速配准方法。该方法以点云为控制源,将点云中的建筑物边缘等典型线元素通过卫星影像的初始有理多项式系数(rational polynomial coefficient, RPC)投影到像方空间,与卫星影像中的线元素进行迭代最近点配准,从而通过RPC参数精校正的方式实现几何配准。采用距离变换模型作为迭代最近点搜索的查找表,提高了运算效率;采用最新的渐进式鲁棒求解策略,能在噪声极多的情况下保证配准的鲁棒性。采用GeoEye-2、高分七号、WorldView-3等卫星影像与激光点云进行了配准实验,并分别通过人工精确量测的外业控制点和作业员内业刺的控制点作为检查,证明所提方法能在3种影像上达到0.4~0.7 m的配准精度,显著优于将点云映射为二维图像然后通过多模态匹配进行配准的策略。 相似文献
10.
地面三维激光数据配准研究 总被引:6,自引:3,他引:6
地面三维激光扫描技术是近几年在测绘行业中兴起的一种全新的测绘技术,使测绘行业由原来的单点测绘转变到整体测绘.但是地面三维激光多站数据配准一直是研究的难点和焦点.结合实际工程对现有的地面三维数据配准方法作概述,并比较各种方法的精度和优缺点,总结出地面三维激光数据较好的配准方法. 相似文献
11.
12.
针对全景江苏三维地理场景建设中的可量测街景数据采集时,由于点云数据稀疏或缺失造成量测可靠性及精度低的问题,探索出以地面激光点云为数据补充,通过坐标转换、点云融合等技术方法加密补偿稀疏点云,提高数据精度的技术路线.最后,以具体道路为例,验证了方法的可行性,为提高车载三维激光点云的应用精度和能力提供了可借鉴的依据. 相似文献
13.
为了更好地利用激光点云数据和航空影像数据信息,改善影像分类效果,提出了将激光点云数据与航空影像进行融合分类,实现面向对象的融合分类方法。在航空影像的分水岭分割算法中加入激光点云高程信息计算梯度,然后结合两种数据源的特征,建立分层分类的规则集得到地物的分类结果。试验表明,激光点云的高程信息能够改善影像分割效果,也能将地面地物与非地面地物较好地区分,对建筑和植被的分类起到了有效作用。 相似文献
14.
为了提高低覆盖率点云的配准精度和收敛速度,提出了一种基于二维图像特征的点云配准方法。首先采用基于区域层次的点云配准算法实现粗配准;然后将三维点云转换成二维图像,再采用SURF算法提取二维图像的特征,并求解其匹配像素点对;最后根据二维匹配点获取相应的三维点云相关点,并计算刚体变换,由此实现点云的快速精确配准。试验结果表明,与迭代最近点(ICP)算法相比,该点云配准方法的配准精度和耗时分别提高了约20%和60%,是一种快速、高精度的点云配准算法。 相似文献
15.
面向车载激光扫描点云快速分类的点云特征图像生成方法 总被引:5,自引:0,他引:5
车载激光扫描是空间数据快速获取的一种重要手段。车载激光扫描点云数据的分类和特征提取是目标识别与三维重建的基础。本文以车载激光点云数据为研究对象,提出了一种适合于其快速分类与目标提取的点云特征图像生成方法。该方法首先将扫描区域进行平面规则格网投影,通过分析格网内部点云的空间分布特征(平面距离、高程差异、点密集程度等)确定激光扫描点的定权,从而生成车载激光扫描点云的特征图像。利用生成的点云特征图像,可采用阈值分割、轮廓提取与跟踪等手段提取图像分割的建筑物目标的边界,从而确定边界内部点云数据,实现目标分类与提取。本文以Optech公司的车载激光扫描数据为实验对象,验证了本文提出方法的可行性和实用性。实验结果表明,该方法能快速有效分离出车载激光扫描点云中的地面数据、建筑物数据等。 相似文献
16.