首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Direct absolute dating of the Penninic Frontal Thrust tectonic motion is achieved using the 40Ar/39Ar technique in the Pelvoux Crystalline Massif (Western Alps). The dated phengites were formed syn-kinematically in shear zones. They underline the brittle-ductile stretching lineation, pressure-shadow fibres and slickensides consistent with underthrusting of the European continental slab below the propagating Penninic Thrust. Chlorite–phengite thermobarometry yields 10–15 km and T ∼280 °C, while 40Ar/39Ar phengite ages mainly range between 34 and 30 Ma, with one younger age at 27 Ma. This Early Oligocene age range matches a major tectonic rearrangement of the Alpine chain. Preservation of prograde 40Ar/39Ar ages is ascribed to passive exhumation of the Pelvoux shear zone network, sandwiched between more external thrusts and the Penninic Front reactivated as an E-dipping detachment fault. Partial resetting in the Low Temperature part of argon spectra below 24 Ma is ascribed to brittle deformation and alteration of phengites.  相似文献   

2.
The alkalic Scituate Granite was emplaced into crystalline sequences within the New England Esmond–Dedham terrane in the Late Devonian ( c. 370 Ma). Variably recrystallized amphibole (iron-rich, hastingsite–hastingsitic hornblende) from four variably deformed samples of the pluton record south-westerly younging 40Ar/39Ar plateau ages ranging between 276 and 263 Ma. These are interpreted to date diachronous cooling through temperatures appropriate for intracrystalline retention of argon following late Palaeozoic orogenic activity. Iron-rich biotite concentrates from the samples record only slightly younger ages, and therefore suggest relatively rapid post-metamorphic cooling. The 40Ar/39Ar ages indicate that the late Palaeozoic tectonothermal overprint was much more regionally pervasive than was previously considered. The apparent timing of this activity is similar to previous estimates for the chronology of high-grade metamorphism throughout the adjacent Hope Valley terrane and for phases of ductile movement on the intervening Lake Char–Honey Hill fault system.  相似文献   

3.
40Ar/39Ar single-grain laserprobe dating of detrital white micas from early Oligocene to middle Miocene (31–14 Ma) sedimentary rocks of the central Swiss Molasse basin reveals three distinct clusters of cooling ages for the hinterland. Two Palaeozoic age clusters reflect cooling after the Variscan orogeny with only limited reheating during the Alpine orogeny. The third Tertiary age cluster reflecting late Alpine cooling is restricted to sediments younger than 20 Myr old. Micas with cooling ages < 30 Myr are interpreted to originate from the footwall of the Simplon detachment fault, thus representing formerly exposed upper levels of the present-day Lepontine metamorphic dome. Erosion of these levels is reflected by an increase of low-grade metamorphic lithic grains in the sandstones. This interpretation puts constraints on the timing of exhumation as well as on the evolution of the drainage pattern of the Central Alps.  相似文献   

4.
New 40Ar/39Ar ages are presented from the giant Sulu ultrahigh-pressure (UHP) terrane and surrounding areas. Combined with U-Pb ages, Sm-Nd ages, Rb-Sr ages, inclusion relationships, and geological relationships, they help define the orogenic events before, during and after the Triassic collision between the Sino–Korean and Yangtze Cratons. In the Qinling microcontinent, tectonism occurred between 2.0 and 1.4 Ga. The UHP metamorphism occurred in the Yangtze Craton between 240 and 222 Ma; its thermal effect on the Qinling microcontinent was limited to partial resetting of K-feldspar 40Ar/39Ar ages. Subsequent unroofing at rates of 5–25 km Myr−1 brought the UHP terrane to crustal levels where it underwent a relatively short amphibolite facies metamorphism. The end of that metamorphism is marked by 40Ar/39Ar ages in the 219–210 Ma range, implying cooling at crustal depths at rates of 50–200 °C Myr−1. Ages in the 210–170 Ma range may reflect protracted cooling or partial resetting by Jurassic or Cretaceous magmatism. Jurassic 166–149 Ma plutonism was followed by cooling at rates of c. 15 °C Myr−1, suggesting relatively deep crustal conditions, whereas Cretaceous 129–118 Ma plutonism was succeeded by cooling at rates of c. 50 C Myr−1, suggesting relatively shallow crustal depths.  相似文献   

5.
The Mersin ophiolite, which is a relic of the late Cretaceous Neotethyan ocean domain in the eastern Mediterranean, is situated on the southern flank of the central Tauride belt. The ophiolite body is cross-cut at all structural levels by numerous mafic dyke intrusions. The dykes do not intrude the underlying melange of platform carbonates. Therefore, dyke emplacement post-dates the formation of the opholite and metamorphic sole but pre-dates the final obduction onto the Tauride platform. The post-metamorphic dyke swarms suggest the geochemical characteristics of Island Arc Tholeiites (IAT). 40Ar/39Ar geochronology of the post-metamorphic microgabbroic-diabasic dykes cutting both mantle tectonites and metamorphic sole revealed ages ranging from 89.6 ± 0.7–63.8 ± 0.9 Myr old, respectively, indicating widespread magmatic activity during the Late Cretaceous-early Palaeocene in the Neotethyan ocean. These data suggest that island arc development in the Neotethyan ocean in southern Turkey was as early as Late Cretaceous.  相似文献   

6.
Heeremans  & Wijbrans 《地学学报》1999,11(5):216-222
The post-Svecofennian tectonic development of southern Finland is controlled by intrusion of rapakivi granites (and associated rocks), reactivation of Svecofennian wrench zones, formation of sedimentary basins and successive intrusion of olivine dolerite dykes and sills. Relative age determinations have revealed that fault reactivation acted before, simultaneously and after intrusion of the rapakivi granites. Results of 40Ar/39Ar geochronometry of the Porkkala–Mäntsälä fault (30 km west of Helsinki) reveal ages predominantly in the range 950–1300 Myr. These ages are all significantly younger than the intrusion age of the rapakivi granites. It is suggested that these ages represent tectonic events related to the intrusion of olivine dolerite dykes and sills in SW Finland and the Sveconorwegian Orogeny active further west. 40Ar/39Ar ages of a sample taken from the Obbnäs granite (U–Pb zircon ages of 1645 ± 5 Myr) show ages predom-inantly in the range of 1400–1550 Myr. These ages are suggested to represent either cooling ages of the granite or ages associated with the formation of the sedimentary grabens.  相似文献   

7.
Determinations of the absolute age of cleavage formation can provide fundamental information about the evolution of orogenic belts. However, when applied to cleavages in slates and phyllites, conventional dating methods are complicated by problems related to mineral separation and the presence of multiple cleavage generations. In situ high-spatial-resolution 40Ar/39Ar laser microprobe geochronology and microstructural observations indicate that the age of cleavage formation in slates and phyllites can be constrained by analysing zones of tightly packed cleavage domains. Three regionally developed cleavages (S2, S3, and S4) are present in the northern Taconic Allochthon of Vermont and New York. Representative samples were studied from a variety of localities where these cleavages, which are defined by white micas, are well developed. In the suite of samples, only S3 and S4 are expressed as domains that are sufficiently wide and spatially isolated in thin section to permit quantitative 40Ar/39Ar geochronology. Mean 40Ar/39Ar laser microprobe ages for these domains are 370.7 ± 1.0 Myr for S3 and 345.5 ± 1.7 Myr for S4. Because estimates of the Ar closure temperature for white micas are substantially higher than the inferred growth temperatures of the micas defining S3 and S4, these values are interpreted as periods since cleavage formation. This interpretation is consistent with independent geochronological constraints on the age of the Acadian orogeny in the region.  相似文献   

8.
Abstract. 40Ar-39Ar analyses of two alunite samples from phreatic craters in the Pliocene Muine volcano in southwest Hokkaido, Japan, were carried out. The alunite with 17.4 permil δ34SV_CDT value in hydrothermal breccia from the Nagaoyama crater and that with 14.3 permil δ34SV_CDT value in silicified andesite from the Konuma crater give total fusion ages of 1.40 ± 0.04 Ma (la uncertainty) and 1.24 ± 0.08 Ma, respectively. However, the spectra of these samples indicate they have been effected by thermal overprinting and/or the existence of excess argon. These preliminary 40Ar-39A analyses suggest that the alunite underwent multiple hydrothermal activity by magmatic gas and vapor subsequent to the main hydrothermal activity.  相似文献   

9.
Abstract Five whole-rock 40Ar/39Ar plateau ages from low-grade sectors of the Sambagawa belt (Besshi nappe complex) range between 87 and 97 Ma. Two whole-rock phyllite samples from the Mikabu greenstone belt record well-defined 40Ar/39Ar plateau ages of 96 and 98 Ma. Together these ages suggest that a high-pressure metamorphism occurred in both the Sambagawa and Mikabu belts at c. 90–100 Ma. The northern Chichibu sub-belt may consist of several distinct geochronological units because metamorphic ages increase systematically from north ( c. 110 Ma) to south ( c. 215 Ma). The northern Chichibu sub-belt is correlated with the Kuma nappe complex (Sambagawa belt). Two whole-rock phyllite samples from the Kurosegawa terrane display markedly older metamorphic ages than either the Sambagawa or the Chichibu belts.
Accretion of Sambagawa-Chichibu protoliths began prior to the middle Jurrasic. Depositional ages decrease from middle Jurassic (Kuma-Chichibu nappe complex) to c. 100 Ma (Oboke nappe complex) toward lower tectonostratigraphic units. The ages of metamorphic culmination also decrease from upper to lower tectonostratigraphic units. The Kurosegawa belt and the geological units to the south belong to distinctly different terrances than the Sambagawa-Chichibu belts. These have been juxtaposed as a result of transcurrent faulting during the Cretaceous.  相似文献   

10.
Abstract 40Ar/39Ar step-heating and single-grain laser fusion ages from phengites from the polydeformed and polymetamorphosed blueschist-greenschist facies Nome Group fall into two groups. Samples from the upper part of the structural section that have experienced a relatively weak metamorphic and deformational post-blueschist facies overprint and one sample from the Cape Nome orthogneiss yield plateau ages of 116-125 Ma. More intensely overprinted samples yield hump-shaped spectra with minimum ages of 123 Ma and maximum ages of 334 Ma. Samples with hump-shaped spectra are derived from a greater structural depth than most samples with plateau ages. Unreasonably old maximum ages from some of the disturbed spectra suggest that the hump-shaped spectra result from the incorporation of excess 40Ar. This interpretation conflicts with previous interpretations of similarly disturbed spectra from the Brooks Range, which have been argued to provide minimum ages for blueschist facies metamorphism. Since the maximum temperatures achieved by all samples were probably above the blocking temperature of Ar in phengite, the 116-125 Ma plateau ages are a minimum age for blueschist facies metamorphism on the Seward Peninsula, Alaska.  相似文献   

11.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   

12.
Abstract 40Ar/39Ar ages from white mica in rocks of the internal zone of the Brooks Range contractional orogen indicate that the Nanielik antiformal duplex developed at about 120 Ma and was remobilized on its southern boundary at c . 108 Ma. Blueschist facies metamorphism accompanied development of the antiform. The timing of the blueschist facies event and creation of the antiform overlap the period of shallow-seated deformation in the foreland fold and thrust belt and sedimentation in the foreland basin of the Brooks Range. Blueschist facies P-T conditions may therefore characterize the thicker parts of orogenic wedges in some orogenic systems; ancient blueschists need not necessarily be interpreted as indicators of active subduction or continent-continent collision.
Microprobe analysis using quantitative wavelength-dispersive and electron backscattered electron imaging methods was used to characterize the composition of white micas in the dated samples. None of the samples was compositionally homogeneous; many contained 2-3 populations of white mica, including both potassic and sodic varieties. Samples which had undergone (in sequence) amphibolite, albite-epidote amphibolite and blueschist facies metamorphic events retained muscovites relict of the amphibolite facies event. Samples that had undergone only the blueschist facies event also contained multiple populations of mica, some probably from detrital sources.  相似文献   

13.
We present the first trace element and age data combined with new Sr, Nd, and Pb isotope ratios on lavas from San Felix Island in the Southeast Pacific. A 40Ar/39Ar plateau age of 421 ± 18 ka implies young intraplate volcanic activity in this region relative to the ∼22 Ma old volcanism on the neighbouring Easter seamount chain (ESC). The incompatible element compositions of the San Felix magmas are similar to those of EM1-type basalts from Gough, although the isotopic compositions differ. San Felix formed some 20 Ma after the ESC plume affected the plate in this region but no chemical signature of the ESC material is observed in the young volcanic rocks. The composition of the San Felix basalts indicates a mantle source containing old continental lithospheric material from either metasomatized mantle or recycled sediments, which ascends in a weak mantle plume.  相似文献   

14.
40Ar/39Ar geochronological and palaeomagnetic dating methods applied to fault breccias in western Norway have isolated two brittle reactivation episodes of the syn-post-Caledonian, extensional Nordfjord-Sogn Detachment. These events, of latest Permian and latest Jurassic–Early Cretaceous ages, demonstrate temporal relationships between development of chemical remanent magnetism and partial resetting of Ar isotopic systems during distinct breccia-forming episodes. A third event of Carboniferous age was also identified in the breccias with the 40Ar/39Ar technique and is a relict unroofing signature inherited from the fault wall-rocks. These brittle faults are significant time markers and become relevant to interpretations of offshore seismic data which attempt to place ages on faults that have undergone multiple reactivation episodes.  相似文献   

15.
Abstract The Protogine Zone comprises a system of anastomosing deformation zones which approximately parallel the eastern boundary of the Sveconorwegian (1200–900 Ma) province in south-west Sweden. Ages of granulite facies metamorphism in the Sveconorwegian province require exhumation from c . 30 to 35 km crustal depths after 920–880 Ma. 40Ar/39 Ar cooling ages are presented for muscovite from high-alumina rocks formed by hydrothermal leaching associated with the Protogine Zone. Growth of fabric-defining minerals was associated with a ductile deformational event; muscovite from these rocks cooled below argon retention temperatures ( c . 375 ± 25° C) at c . 965–955 Ma. Muscovite from granofels in zones of intense alteration indicates that temperatures > 375 ± 25° C were maintained until c . 940 Ma. Textural relations of Al2SiO5 polymorphs and chloritoid suggest that dated fabrics formed during exhumation. The process of exhumation, brittle overprint on ductile structures and hydrothermal activity along faults within the Protogine Zone tentatively are interpreted as the peripheral effects of initial Neoproterozoic exhumation of the granulite region of south-western Sweden.
Muscovite in phyllonites associated with the 'Sveconorwegian thrust system'cooled below argon retention temperatures at c . 927 Ma. Exhumation associated with this cooling could have been related to extension and onset of brittle-ductile deformation superimposed on Sveconorwegian contraction.  相似文献   

16.
ABSTRACT This work presents a detailed 87Sr/86Sr isotope curve for the interval 7.5–9.7 Ma obtained by a high-resolution analysis (sampling spacing of about 40 kyr) of an astronomically calibrated land-based sedimentary sequence exposed in the central Mediterranean area (Gibliscemi section, southern Sicily). The main aim is to verify a synchronous response of the Mediterranean seawater Sr isotope record to the oceanic forcing on the basis of multiple comparisons of the Gibliscemi record with published coeval 87Sr/86Sr curves. A good correlation with the 87Sr/86Sr data from the ODP site 926 (equatorial Atlantic ocean), considered to be the Sr chemostratigraphic reference section for the Late Miocene, and from the Pacific DSDP site 590B was registered. Conversely, the comparison of the Gibliscemi Sr isotope data with 87Sr/86Sr ratios from the coeval segment of the land-based Sardella section (eastern Mediterranean) shows important differences highlighting a local control on the seawater Sr isotope changes in semi-isolated subbasins within the Late Miocene Mediterranean.  相似文献   

17.
青藏高原东北缘的宗务隆构造带位于柴达木地块与南祁连地块之间,位置极为重要,其中发育的韧性剪切带变形特征和形成时代对于理解该构造带的构造属性具有重要的制约意义。详细的野外构造解析,显微构造解析与年代学研究表明,宗务隆剪切带发育走向NWW-SEE向糜棱面理,其上发育NWW-SEE向缓倾的拉伸线理,指示该剪切带逆冲-走滑剪切的特征。宏观尺度上可见由于剪切作用形成的不对称褶皱、旋转碎斑、构造透镜体及褶劈理等变形形迹;显微镜下可观察到云母鱼、S-C组构、σ型残斑及石英动态重结晶、拔丝构造等变形现象,指示该韧性剪切变形的温度在300~400℃。对剪切带同构造变形的白云母和黑云母进行了40Ar/39Ar同位素年代学分析,2个样品的坪年龄分别为(245.8±1.7)Ma、(238.5±2.6)Ma,指示了该剪切变形发生在早—中三叠世期间。结合对区域地质、岩石学等资料的综合分析,该期韧性剪切变形年龄代表了宗务隆构造带印支期造山作用的时间,这期造山活动可能与宗务隆有限洋盆闭合后,南祁连地块与欧龙布鲁克地块的斜向碰撞有关。  相似文献   

18.
The ENE–WSW Autun Shear Zone in the northeastern part of the French Massif Central has been interpreted previously as a dextral wrench fault. New field observations and microstructural analyses document a NE–SW stretching lineation that indicates normal dextral motions along this shear zone. Further east, similar structures are observed along the La Serre Shear Zone. In both areas, a strain gradient from leucogranites with a weak preferred orientation to highly sheared mylonites supports a continuous Autun–La Serre fault system. Microstructural observations, and shape and lattice-preferred orientation document high-temperature deformation and magmatic fabrics in the Autun and La Serre granites, whereas low- to intermediate-temperature fabrics characterize the mylonitic granite. Electron microprobe monazite geochronology of the Autun and La Serre granites yields a ca. 320 Ma age for pluton emplacement, while mica 40Ar-39Ar datings of the Autun granite yield plateau ages from 305 to 300 Ma. The ca. 300 Ma 40Ar-39Ar ages, obtained on micas from Autun and La Serre mylonites, indicate the time of the mylonitization. The ca. 15-Ma time gap between pluton emplacement and deformation along the Autun–La Serre fault system argue against a synkinematic pluton emplacement during late orogenic to postorogenic extension of the Variscan Belt. A ductile to brittle continuum of deformation is observed along the shear zone, with Lower Permian brittle faults controlling the development of sedimentary basins. These results suggest a two-stage Late Carboniferous extension in the northeastern French Massif Central, with regional crustal melting and emplacement of the Autun and La Serre leucogranites around 320 Ma, followed, at 305–295 Ma, by ductile shearing, normal brittle faulting, and subsequent exhumation along the Autun–La Serre transtensional fault system.  相似文献   

19.
For studies of mass-dependent fractionation of calcium isotopes in natural materials, the 48Ca/42Ca ratio is a superior choice to the conventionally measured 44Ca/40Ca ratio for two important reasons. These are (1) mass-dependent fractionation can be determined free from the effects of inherited or ingrown radiogenic 40Ca and (2) this ratio increases the spread of measured isotopic masses by 50%, resulting in statistically better resolution of fractionation, assuming similar precision. A third, though strictly technical, advantage is the inherent ability of a mass spectrometer to measure ratios close to unity (48Ca/42Ca) more precisely than very small or large ratios (44Ca/40Ca). However, because of the very low natural abundance of both 48Ca and 42Ca, their ratio has been very difficult to measure, the only attempt so far being on a high mass resolution MC-ICP-MS with a precision of 0.33%. We report here determination of the 48Ca/42Ca ratio by the more commonly available and user-friendly multi-collector TIMS using a 43Ca-46Ca double-spike, with a significantly better precision of 0.18% (2s). The 48Ca/40Ca or 44Ca/40Ca ratio can also be measured in the same mass spectrometer run to provide complementary information on any radiogenic component.  相似文献   

20.
The Variscan crystalline basement of the Calabria–Peloritani terrane (CPT) in southern Italy was partly reworked by ductile and brittle shear zones throughout the Alpine tectonic evolution (from thickening to exhumation). Although evidence of extensional tectonics in the CPT has already been found and roughly constrained to the Oligocene onward, no attempt has ever been made to directly date brittle fault movements. Structural (meso- and micro-scale), kinematic and petrographic analyses and 40Ar–39Ar laser experiments reveal that the pseudotachylyte-bearing shear zones of the Palmi area in southern Calabria formed in response to extensional shearing ∼33.5 Ma ago and overprinted compressional tectonic structures. Results provide the first direct evidence of Middle Oligocene co-seismic faulting in the area and confirm the role of extensional tectonics in promoting the Oligocene exhumation of the Calabria basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号