首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ~ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700?μg/m3 under blowing sand weather, 2000?μg/m3 under sand-dust storm weather, and 400?μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z?=?20713.5?M 0.995 under floating dust weather, Z?=?22988.3?M 1.006 under blowing sand weather, and Z?=?24584.2?M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.  相似文献   

2.
A modified moist ageostrophic <Emphasis Type="Italic">Q</Emphasis> vector   总被引:3,自引:0,他引:3  
The quasi-geostrophic Q vector is an important rainfall associated with large-scale weather systems diagnostic tool for studying development of surface and is calculated using data at single vertical level. When ageostrophic Q vector was introduced, it required data at two vertical levels. In this study, moist ageostrophic Q vector is modified so that it can be calculated using data at a single vertical level. The comparison study between the original and modified moist ageostrophic Q vectors is conducted using the data from 5 to 6 July 1991 during the torrential rainfall event associated with the Changjiang-Huaihe mei-yu front in China. The results reveal that divergences of original and modified moist ageostrophic Q vectors have similar horizontal distributions and their centers are almost located in the precipitation centers. This indicates that modified moist ageostrophic Q vector can be used to diagnose convective development with reasonable accuracy.  相似文献   

3.
This paper focuses on the data assimilation methods for sea surface winds, based on the level-2B HY-2A satellite microwave scatterometer wind products. We propose a new feature thinning method, which is herein used to screen scatterometer winds while maintaining the key structure of the wind field in the process of data thinning for highresolution satellite observations. We also accomplish feeding the ambiguous wind solutions directly into the data assimilation system, thus making better use of the retrieved information while simplifying the assimilation process of the scatterometer products. A numerical simulation experiment involving Typhoon Danas shows that our method gives better results than the traditional approach. This method may be a valuable alternative for operational satellite data assimilation.  相似文献   

4.
A 3-D chemical transport model (OSLO CTM2) is used to investigate the impact of the increase of NOx emission over China. The model is capable to reproduce basically the seasonal variation of surface NOx and ozone over eastern China. NOx emission data and observations reveal that NOx over eastern China increases quite quickly with the economic development of China. Model results indicate that NOx concentration over eastern China increasingly rises with the increase of NOx emission over China, and accelerates to increase in winter. When the NOx emission increases from 1995 to its double, the ratio of NO2/NOx abruptly drops in winter over northern China. Ozone at the surface decreases in winter with the continual enhancement of the NOx level over eastern China, but increases over southern China in summertime. It is noticeable that peak ozone over northern China increases in summer although mean ozone changes little. In summer, ozone increases in the free troposphere dominantly below 500 hPa.Moreover, the increases of total ozone over eastern China are proportional to the increases of NOx emission.In a word, the model results suggest that the relationship between NOx and ozone at the surface would change with NOx increase.  相似文献   

5.
The mechanisms driving changes in dominant plant species are the key for understanding how grassland ecosystems respond to climate change. In this study, we examined plant functional traits (morphological characteristics: plant height, leaf area, and leaf number; biomasses: aboveground, belowground, and total; and growth indices: root-to-shoot ratio, specific leaf area, and leaf mass ratio) of four zonal Stipa species (S. baicalensis, S. bungeana, S. grandis, and S. breviflora) from Inner Mongolian grassland in response to warming (control, +1.5, +2.0, +4.0, and +6.0?), changing precipitation (-30%, -15%, control, +15%, and +30%), and their combined effects via climate control chambers. The results showed that warming and changing precipitation had significant interactive effects, different from the accumulation of single-factor effects, on functional traits of Stipa species. The correlation and sensitivity of different plant functional traits to temperature and precipitation differed. Among the four species, the accumulation and variability of functional traits had greater partial correlation with precipitation than temperature, except for leaf number, leaf area, and specific leaf area, in S. breviflora, S. bungeana, and S. grandis. For S. baicalensis, the accumulation and variability of plant height, aboveground biomass, and root-to-shoot ratio only had significant partial correlation with precipitation. However, the variability of morphological characteristics, biomasses, and some growth indices, was more sensitive to temperature than precipitation in S. bungeana, S. grandis, and S. breviflora—except for aboveground biomass and plant height. These results reveal that precipitation is the key factor determining the growth and changes in plant functional traits in Stipa species, and that temperature mainly influences the quantitative fluctuations of the changes in functional traits.  相似文献   

6.
We investigated and evaluated the occurrence of fault zone tracer gases (CO2, He, Rn), volatile organohalogens (CH3Cl, CHCl3, CHBr3), alkanes and limonene in soil and nest gases of red wood ants (RWA) in comparison to ambient air, in a seismically active area. In this new approach, we compared RWA-free areas to RWA-areas by combining different investigation and analytical methods. In soil gas, the fault zone tracer gas Rn was surprisingly highly correlated to limonene, suggesting a combination of biotic production of limonene and abiotic degassing of Rn in a seismically active area; moderate correlations were found with trihalomethanes and other halocarbons. In RWA nests a variety of elevated concentrations of haloforms were found, while remaining below the atmospheric background values in RWA-free areas. The evidence of CHCl3 in RWA nests is the first record. Its average concentrations in nests of F. rufa and F. polyctena were up to 3 fold higher than atmospheric background and up to 28–70 fold higher compared to e.g. volcanic emissions being considered as one of its main geogenic sources. Thus, RWA nests could possibly be an additional source for CHCl3 liberation. Consequently, apart from RWA being bioindicators for seismically active degassing faults, they might also be used as bioindicators for CHCl3 formation in forest soils. Although we cannot yet differentiate between a geogenic/abiotic and a biotic formation. RWA nests will have to be reconsidered for halocarbon formation in future quantifications of geochemical cycles at global scale, since they impact organic soil chemistry through biotic and/or abiotic pathways. Therefore, further larger-scale research in different tectonic settings but also in well-known CHCl3 “hot spot” study areas such as the Klosterhede area (Denmark) should focus directly on gas sampling from confirmed active fault systems. Nests of other ant species should be addressed to compare seasonal, diurnal and nocturnal variations of degassing procedures in relation to earth tides, different geologic settings, and tectonic events such as earthquakes and on quantifying the fluxes to the atmosphere.  相似文献   

7.
Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400–500 ppm) and high CO2 (ca. 1200–1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5–3.0%) than that from oligotrophic waters (1.0–2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC 50 ), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as COlevels continue to rise.  相似文献   

8.
The stable-hydrogen kinetic isotope effects (KIEs) for a series of n-alkanes in reaction with chlorine atoms in the gas phase were studied in a 25-L PTFE reaction chamber at 298 K. The time dependence of both the stable hydrogen isotope ratios and the concentrations was determined using a gas chromatography pyrolysis isotope ratio mass spectrometry (GC-P-IRMS) system. The following KIE values, in per mil (‰), were obtained: 39.6 ± 2.7 (n-butane), 28.2 ± 0.9 (n-pentane), 24.6 ± 1.0 (n-hexane), 24.0 ± 1.2 (n-heptane), 17.9 ± 3.3 (n-octane), 15.1 ± 0.7 (n-nonane), and 14.9 ± 1.8 (n-decane). The errors given are the ±1σ standard errors. These measured values were used to derive structure–reactivity relationship (SRRs), which allow for the calculation of the KIEs for the reaction of n-alkanes with Cl atoms. The results of the calculations agree with the measurements within few per mil or better. The site specific stable hydrogen isotope fractionation effects for methyl groups are approximately a factor of 3 larger than those for methylene group, a finding which is qualitatively similar to site-specific stable hydrogen isotope effects reported in literature for reactions of alkanes with the OH radical. Because n-alkanes with close to natural isotope ratios (i.e. neither artificially labeled, nor enriched or depleted) were used, the KIE data are directly applicable to atmospheric studies. Based on these KIE values, the impact of Cl-atom reactions of the stable hydrogen isotope ratio on alkanes are estimated for different levels of Cl-atom concentrations. On average in the troposphere, the impact of Cl-atom reactions of the stable hydrogen isotope ratio of n-alkanes will be small. However, in regions of the troposphere with high concentrations of Cl atoms, such as the tropospheric ozone depletion episodes during polar sunrise, the impact of Cl-atom reactions is substantial. An erratum to this article is available at .  相似文献   

9.
The brown planthopper Nilaparvata lugens (Stål) is a major rice insect pest in China and other Asian countries. This study assessed a potential northward shift in the overwintering boundaries and changes in the overwintering areas and voltinism of this planthopper species in China in response to global warming. Temperature data generated by 15 Global Circulation Models (GCMs) from 2010 to 2099 were employed to analyze the planthopper’s overwintering boundaries and overwintering areas in conjunction with three Special Report on Emissions Scenarios (SRES). Planthopper voltinism from 1961 to 2050 was analyzed in scenario A2 using degree-day models with projections from the regional circulation model (RCM) Providing Regional Climates for Impacts Studies (PRECIS). In both analyses, 1961–1990 served as the baseline period. Both the intermittent and constant overwintering boundaries were projected to shift northward; these shifts were more pronounced during later time periods and in scenarios A2 and A1B. The intermittent overwintering area was modeled to increase by 11, 24 and 44 %, and the constant overwintering area, by 66, 206 and 477 %, during the 2020s, 2050s and 2080s, respectively. Planthopper voltinism will increase by <0.5, 0.5–1.0 and 1.0–1.4 generations in northern, central and southern China, respectively, in 2021–2050. Our results suggest that the brown planthopper will overwinter in a much larger region and will produce more generations under future climate warming scenarios. As a result, the planthopper will exert an even greater threat to China’s rice production in the future.  相似文献   

10.
A field-based intercomparison study of a(DOAS) instrument (OPSIS AB, Sweden) andcommercial Differential Optical Absorption Spectroscopydifferent point-sample monitoring techniques (PM, basedon an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted inBeijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2,03, benzene, and toluene were monitored continuously during the four months. A good agreement betweenthe DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene,and NO obtained by DOAS were significantly lower than those measured by the point monitors. Theozone levels monitored by the DOAS were generally higher than those measured by point monitors. Theseresults may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics atthe measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer ofthe DOAS system, the error in the DOAS analysis can also not be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号