首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present-day state and the functioning conditions of different-type limnic ecosystems in the Amu Darya delta are examined. The ecosystems are subjected to anthropogenic impact at an abrupt decrease in freshwater inflow and a change to another source of water feed.  相似文献   

2.
Space monitoring of Aral Sea degradation   总被引:1,自引:0,他引:1  
The results of remote sensing survey of the Aral Sea in its degradation period are given. Satellite images are used to map shoreline retreat from 1961 to 2008 and to measure the decrease in the area. Seasonal variations in shoreline and water area are identified, suggesting seasonal level variations and correlating well with data of satellite altimetry surveys of sea level. Observations covered surge phenomena, seasonal dynamics of landscapes, and the seasonal salinization rhythm in coastal territories with the subsequent formation and weathering of salt crusts. The character of river runoff input into the Great Sea resulting from overbank flooding in artificial water bodies in the Amu Darya delta is identified.  相似文献   

3.
In the Aral Sea Basin, where the Central Asian countries compete for limited water resources, reliable information on the actual water use for eight million ha of irrigated land are rare. In this study, spatially distributed land use data, seasonal actual evapotranspiration, and reference evapotranspiration derived from multitemporal MODIS data were combined with in situ water flow measurements for irrigation performance assessments in the upper Amu Darya Delta. The functioning of the major irrigation and drainage which supplies an agricultural area of 270,000 ha in the Uzbek province Khorezm was analysed using water balancing and adequacy indicators of irrigation water use.An average relative evapotranspiration of 95% indicated fulfilled water demands and partly over-irrigation, whereas values below 75% disclosed inadequate water supply in distant parts of the irrigation system. On the other hand, immense water withdrawals of approximately 24,000 m3 ha−1 recorded at the system boundaries between April and September 2005 clearly exceeded the field water demands for cotton cultivation. Only 46% of the total irrigation amounts were consumed for crop production at field level. Throughout the vegetation period, approximately 58% of the total available water left the region as drainage water. Monthly observations of the depleted fraction and the drainage ratio highlighted drainage problems and rising groundwater levels at regional scale. In the most distant downstream subsystem, a high risk of groundwater and soil salinity during the main irrigation phase was found.A combination of high conveyance losses, hydraulic problems, direct linkages between irrigation and drainage, and low field application efficiencies were identified as major reasons for underperforming irrigation. The findings underlined the necessity of water saving and of reconsidering water distribution in Khorezm. The remote sensing approach was concluded as a reliable data basis for regular performance assessments for all irrigation systems in Central Asia.  相似文献   

4.
Avi Gafni  Yechiel Zohar 《水文研究》2007,21(16):2164-2173
The bio‐drainage–commercial forestry strategy was applied in five plots in the Yizre'el Valley, northern Israel, to evaluate the hydrological and salinity impacts of eucalypt plantations. Each plot contained a mix of 11 selected eucalyptus species/ecotypes. Two plots (Nahalal and Genigar), representing the two extreme waterlogging/salinity conditions in the valley, were selected for in‐depth monitoring over a 10‐year period to assess the likely environmental improvement through bio‐drainage. Despite impressive growth rates of genetically improved Eucalyptus camaldulensis in the year‐round waterlogged, slightly saline Nahalal site (650 mm annual rainfall), the water uptake by the trees was insufficient to control the rising water table caused by excessive water inputs, both natural and human. In the more saline, alkaline and drier Genigar plot (450 mm annual rainfall), where rainfall is the only water input, the ground water dropped to below 3 m from soil surface in the fourth year after planting, i.e. deeper than the adjacent ground water levels. Both sites showed appreciable rise in wells that penetrated the 3‐ to 4‐m confining layer. The 10‐year salinity (EC) trend of the top layer in Nahalal varied because the drainage was limited by the positive water balance and the above‐average spells of dry winters. In and below the 4 m deep layer the EC remained below 1·5 dS m?1 throughout the entire 10‐year study. The last EC measurement, taken in 2003, showed values not higher than 4 dS m?1 throughout the 6 m soil profile. In Genigar, there was significant leaching of salts from the top layer (1 m) during the 9‐year monitoring period, but recently a salts ‘bulge’ was gradually developed in the 1–5 m strata indicating that the expected downward movement of leached salts was impeded by the 3–4 m deep low‐permeability clayey layer that lies over a coarser, far more conductive and notably confined layer, which leads to a perched water body. The last EC measurement at the end of 2003 showed a maximum value of 5·5 dS m?1 at 3 m depth. No signs of tree stress were observed in either site, at any soil depth during the 10 years of monitoring. Theoretical considerations do not support the hypothesis that there would be a fatal long‐term accumulation of salts in the root zone. The Israeli experience has shown that the bio‐drainage technique can effectively lower a shallow water table and reverse salinity trends, provided that the overall water balance is negative, i.e. that the water inputs match the water use by the tree plantation and local drainage characteristics. However, the rate of improvement of the hydraulic, salinity, sodicity and soil physical properties is site specific. Excess fresh water inputs into the plantation, although they create waterlogging conditions, supply unlimited water to the trees, which, in turn, show exceptional growth rates, with usable commercial value. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Climate change due to global warming is a public concern in Central Asia. Because of specific orography and climate conditions, the republic of Tajikistan is considered as the main glacial center of Central Asia. In this study, regional climate change impacts in the two large basins of Tajikistan, Pyanj and Vaksh River basins located in the upstream sector of the Amu Darya River basin are analysed. A statistical regression method with model output statistics corrections using the ground observation data, Willmott archived dataset and GSMaP satellite driven dataset, was developed and applied to the basins to downscale the Global Climate Model Projections at a 0.1‐degree grid and to assess the regional climate change impacts at subbasin scale. It was found that snow and glacier melting are of fundamental importance for the state of the future water resources and flooding at the target basins since the air temperature had a clearly increasing trend toward the future. It was also found that the snowfall will decrease, but the rainfall will increase because of the gradual increase in the air temperature. Such changes may result in an increase in flash floods during the winter and the early spring, and in significant changes in the hydrological regime during a year in the future. Furthermore, the risks of floods in the target basins may be slightly increasing because of the increase in the frequencies and magnitudes of high daily precipitation and the increase in the rapid snowmelt with high air temperatures toward the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
咸海地处中亚,气候和人类的双重影响下湖面急剧萎缩引发区域生态危机,定量解析其水量平衡互动关系及影响因素对咸海地区水资源管理和生态保护有重要意义.基于1990-2019年密集时序Landsat影像、T/P卫星、Jason1/2测高卫星及咸海数字测深模型(DBM),提取近30年咸海面积、水位变化信息,重建咸海水位-面积-库...  相似文献   

7.
The formation and distribution of present-day water resources under the effect of changing climate are studied. Seasonal, annual, and many-year variations in the regime of spring-flood and dry-season runoff of rivers with drainage areas from 2000 to 20000 km2, reflecting the zonal landscape-climatic conditions of runoff formation, are considered. It is shown that various and often contradictory demands of water users to water supply distribution over seasons of the year result in that the entire water management complex depends on not only the total volume of water resources, but also on the water regime characteristics of rivers in different phases of hydrological year. It was established that the climate changes recorded in the recent decades radically change the pattern of space and time variations in runoff characteristics.  相似文献   

8.
Levels of dissolved ammonia, nitrite, nitrate, phosphate and silicate, as well as chlorosity, dissolved oxygen and hydrogen sulphide in the water of Lake Mariut have been investigated over a year. This shallow brackish-water lake, situated south of Alexandria, suffers from intense pollution. Two different water bodies can be distinguished in Lake Mariut. One, occupying the eastern side of the lake, is affected by sewage and industrial waste disposal, as well as discharge of highly polluted water from Qalaa Drain. The water in this region, which had lower regional average chlorosity values, contained abnormal higher concentrations of phosphate and nitrogenous salts in the presence of H2S. The western side was always oxic and showed higher average values of chlorosity. This western region contained lower concentrations of phosphate and nitrogenous salts, due to the influence of the relatively clean water from Umum Drain. The principal source of silicon for Lake Mariut is agricultural drainage. The annual average concentrations of phosphate and nitrogenous salts in this lake were considerably higher than those in the neighbouring comparatively less polluted Nozha Hydrodrome.  相似文献   

9.
Landscape adjustment to tectonic, lithologic and climatic forcing leads to drainage reorganization and migration of divides. The respective contribution of these forcings, especially on carbonate landscapes is not well defined. Here, we have addressed this issue by combining field observations, satellite image interpretation and digital elevation model (DEM) quantitative analysis to assess drainage response to spatially heterogeneous rainfall, asymmetric uplift, and normal faulting on an emerging carbonated platform (Sumba Island, Indonesia). We map geomorphic markers of fluvial dynamics and drainage rearrangement and compute a χ parameter that incorporates the contributions of unevenly distributed precipitation and asymmetric uplift to estimate erosional disequilibrium across drainage divides. We find that asymmetric emergence of Sumba Island created an initial parallel drainage, asymmetric across a divide that propagates landwards. Soon after establishing itself on the emerging slopes this drainage was disturbed by normal faulting, which has become the main force driving drainage rearrangement. Vertical offsets across normal fault scarps first triggered aggradation within valleys over the hanging walls, and then disconnected upstream reaches from downstream reaches, leading to the formation of wind gaps atop the fault scarps and upstream perched sedimentary basins. The defeat of rivers by growing fault scarps was catalysed by the possibility for surface water to be rerouted near the fault scarps into underground water networks inside the underlying carbonates. At the end of the process, the opposite drainage across the main water divide captured the struggling drainage. Capture mechanisms include initial groundwater capture of the perched alluvial aquifers, followed by ground sapping at the head of the opposite drainage and surface stream diversion by avulsion. Finally, normal faulting is the main driving force of drainage rearrangement allowing avulsion and karstic rerouting whereas asymmetric uplift and climate forcings have shown a low efficiency. The role of karstification is more ambiguous, catalysing or inhibiting drainage rearrangement. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The characteristics of zooplankton of the Sheksna Reservoir are presented for years with different water abundance and weather conditions. Zooplankton of Lake Beloe (Belozerskii Pool of the Sheksna Reservoir) is shown to retain the characteristics of a limnetic community, which was typical of the lake before the onset of Sheksna runoff regulation, with a predominance of crustacean biomass.  相似文献   

11.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Severe dust storms in the Southern Aral Sea Basin have become common with the desiccation of the sea. The high incidence of dust in the area has had severe ecological consequences. Within the framework of efforts to reduce this phenomenon, deflatability as well as deflatability‐related characteristics of some prominent soils/sediment surfaces in the Southern Aral Sea Basin were examined. The materials included a salt crust from a developed Solonchak, a Takyr crust and a Takyr‐like soil, and salt crusts from undeveloped Solonchaks formed on the exposed bottom of the Aral Sea. Characteristics determined were particle size distribution, dry aggregate size distribution and salt, carbonate and organic carbon contents. Deflatability was examined using a suction type wind tunnel with a SENSIT‐type sensor to detect airborne unconsolidated material, on materials treated to different moisture levels and with a chemical stabilizer, and on restored crusts created from the unconsolidated materials. Fine sand dominates in the materials, and in the Takyr crust and Takyr‐like soils is accompanied by significant amounts of silt and clay. All materials contain moderate amounts of carbonate and are low in organic matter. All soils/sediments contain salts, but in the salt crusts of the Solonchaks the salt fraction dominates. They all have more than 50 per cent PM850 (particles with diameter <850 µm), indicating a relatively high deflatability potential. The materials from the Takyr crusts and Takyr‐like soil with a high proportion of fine aggregates had the lowest threshold friction velocities, while the salt crusts of the Solonchaks with a high proportion of coarse aggregates had the highest. This suggests that Takyrs and Takyr‐like soils are the most deflatable and Solonchak soils the least deflatable. These differences are attributed to the presence of salts that create stable, large aggregates in the Solonchak crusts. Wetting of the materials to three moisture levels considerably increased threshold friction velocity. The increase was most prominent in the salt‐rich materials, and was attributed to the rapid formation of surface films by drying in the course of the wind tunnel determinations. Applications of chemical stabilizers at two levels also considerably increased threshold friction velocity. On the restored crusts, threshold friction velocity dramatically increased, occasionally to non‐recordable values. This increase was monitored with both the salt crusts characteristic for the Solonchak soils and the fine‐grained crusts characteristic for the Takyr soils. The stability was attributed to the tightly packed salt particles in the salt crusts, and to the cohesive properties of the fine‐grained materials in the Takyr crusts. Once the crusts were ruptured, however, strong deflation commenced. These results suggest that by maintaining moisture in the soils/sediments (for example, by maintaining a high water table in the Amu‐Darya river flood plain) deflation can be reduced. By the same means, deflation can be reduced by creating new crusts or by preserving existing crusts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Stenina  A. S.  Khokhlova  L. G.  Patova  E. N.  Lytkina  Zh. A. 《Water Resources》2004,31(5):545-552
Chemical characteristics of the surface water and algae in lakes in the Seduiyakha River basin are presented. Specific features of components of limnetic ecosystems under the influence of anthropogenic factors in the territory of an oil–gas condensate field are shown. Ambiguous response of algal communities to changes in the aquatic environment is revealed.  相似文献   

14.
Since 1986, with a sharp decrease in water dis-charges, the Yellow River has entered a period charac-terized by low discharges and seasonally occurring dry-ups[1,2]. Since 1999, more strict management of water diversion has been imposed, and therefore the dry-ups have been well under control. However, the lower reaches of the Yellow River is still predominated by low-discharges, and has become a man-induced shrinking river. In the past 40 years, significant effect of soil and water conservat…  相似文献   

15.
太湖水系结构特点及其功能的变化   总被引:20,自引:8,他引:12  
韩昌来  毛锐 《湖泊科学》1997,9(4):300-306
太源水系上游为树状排列的河流,下游为扇形排水系统,全区江河湖海相贯通,受海潮和江流的作用,下游水系多变,防洪抗灾能力脆弱。近年来,虽经治理,该水系仍出现了“中雨大灾”,水资源不足及水质污染突出等一系列功能性的变化。  相似文献   

16.
Mikhailova  M. V. 《Water Resources》2003,30(4):370-378
The regularities of the Ebro River delta formation and the impact of hydraulic construction on the river sediment runoff are discussed. As shown, the drastic reduction of the sediment runoff after the construction of two large reservoirs in the lower river reaches in the 1960s slowed down the delta protrusion and intensified the delta coastline washout.  相似文献   

17.
Abstract

The Vakhsh and Pyandj rivers, main tributaries of the Amu Darya River in the mountainous region of the Pamir Alay, play an important role in the water resources of the Aral Sea basin (Central Asia). In this region, the glaciers and snow cover significantly influence the water cycle and flow regime, which could be strongly modified by climate change. The present study, part of a project funded by the European Commission, analyses the hydrological situation in six benchmark basins covering areas of between 1800 and 8400 km2, essentially located in Tajikistan, with a variety of topographical situations, precipitation amounts and glacierized areas. Four types of parameter are discussed: temperature, glaciation, snow cover and river flows. The study is based mainly on a long-time series that ended in the 1990s (with the collapse of the Soviet Union) and on field observations and data collection. In addition, a short, more recent period (May 2000 to May 2002) was examined to better understand the role of snow cover, using scarce monitored data and satellite information. The results confirm the overall homogeneous trend of temperature increase in the mountain range and its impacts on the surface water regime. Concerning the snow cover, significant differences are noted in the location, elevation, orientation and morphology of snow cover in the respective basins. The changes in the river flow regime are regulated by the combination of the snow cover dynamics and the increasing trend of the air temperature.
Editor Z.W. Kundzewicz  相似文献   

18.
The upper part of the Huanghe (Yellow River) drainage basin supplies 50–60% of the annual water discharge and only 10% of the total river sediment load, while the middle reaches contribute 30–40% of the water flow and 90% of the annual sediment load, because of severe erosion over the Loess Plateau. Large variations in both annual water discharge and sediment load occur in the Huanghe. Heavy sedimentation in the lower reaches of the channel makes the river bed aggrade several centimetres per year. Of the suspended sediment in the river, 90–95% is deposited in the lower part of the river course and in the coastal shallow water area; less than 5–10% escapes from Laizhou Bay and enters the Central Bohai and/or North Huanghai (Yellow Sea). The active delta complex now propagates seawards at a mean rate of 42 km2 year−1.  相似文献   

19.
YinNan Irrigation District (YNID) is located in the upper reaches of the Yellow River in NingXia, China. Its irrigated area is about 80 000 ha, with one‐third of it for rice production. The major part of its drainage system was constructed between the 1950s and 1970s to maintain the salt and water balances of the district. The system, however, has been reported as draining the agricultural lands excessively by several studies. In addition to field, lateral and main drainage ditches, agricultural fields of YNID are also under the influence of the Yellow River channel and some low‐lying depressions, thus forming a dual drainage system. Owing to difficulties in irrigation inflow measurement, evaluation of the existing drainage system often appears to be elusive. Based on a dual drainage assumption and an on‐site controlled drainage experiment, we present a detailed analysis on drainage components and the salt and water balance of YNID. Results show that, by implementing controlled drainage, shallow drainage from field ditches can be reduced by 60%. Deep drainage from main ditches, the Yellow River channel and low‐lying depressions is relatively stable year around, and it neutralized the potential effect of controlled drainage on salinity increase. Drainage water salinity calculated from the dual subsurface drainage model was consistent with field observations, proving that the dual drainage assumption is valid for the study area. Based on this study, field water management practices of the irrigation district can be better targeted and fairly evaluated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In heterogeneous natural gas reservoirs, gas is generally present as small patch-like pockets embedded in the water-saturated host matrix. This type of heterogeneity, alsocalled "patchy saturation", causes significant seismic velocity dispersion and attenuation. Toestablish the relation between seismic response and type of fluids, we designed a rock physicsmodel for carbonates. First, we performed CT scanning and analysis of the fluid distributionin the partially saturated rocks. Then, we predicted the quantitative relation between the waveresponse at different frequency ranges and the basic lithological properties and pore fluids.A rock physics template was constructed based on thin section analysis of pore structuresand seismic inversion. This approach was applied to the limestone gas reservoirs of the rightbank block of the Amu Darya River. Based on poststack wave impedance and prestack elasticparameter inversions, the seismic data were used to estimate rock porosity and gas saturation.The model results were in ~ood a~reement with the production regime of the wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号