首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gondwana Research》2014,25(3-4):1038-1050
The New England Orogen of easternmost Australia is dominated by suites of Palaeozoic to earliest Mesozoic rocks that formed in supra-subduction zone settings at Gondwana's eastern margin. On the northern New South Wales coast at Rocky Beach, Port Macquarie, a serpentinite mélange carries rare tectonic blocks of low-grade, high-pressure, metamorphic rocks derived from sedimentary and igneous protoliths. Dominant assemblages are glaucophane + phengite ± garnet ± lawsonite ± calcite ± albite blueschists and lawsonite-bearing retrogressed garnet + omphacite eclogites. In some blocks with sedimentary protoliths, eclogite forms folded layers within the blueschists, which is interpreted as Mn/(Mn + Fe) compositional control on the development of blueschist versus eclogite assemblages. Review of previous studies indicates pressure–temperature conditions of 0.7–0.5 GPa and ≤ 450 °C. Three samples of high-pressure metasedimentary rocks contain Archaean to 251 ± 6 Ma (Permo-Triassic) zircons, with the majority of the grains being Middle Devonian to Middle Carboniferous in age (380–340 Ma). Regardless of age, all grains show pitting and variable rounding of their exteriors. This morphology is attributed to abrasion in sedimentary systems, suggesting that they are all detrital grains. New in situ metamorphic zircon growth did not develop because of the low temperature (≤ 450 °C) of metamorphism. The Permo-Triassic, Devonian and Carboniferous zircons show strong heavy rare earth element enrichment and negative europium anomalies, indicating that they grew in low pressure igneous systems, not in a garnet-rich plagioclase-absent high pressure metamorphic environment. Therefore the youngest of these detrital zircons provides the maximum age of the metamorphism. A titanite + rutile porphyroblast within an eclogite has a U–Pb age of 332 ± 140 Ma (poor precision due to very low U abundances of mostly < 1 p.p.m.) and provides an imprecise direct age for metamorphism. In the south of the Port Macquarie area, the Lorne Basin ≥ 220 Ma Triassic sedimentary and volcanic rocks unconformably overlie serpentinite mélange, and provide the minimum age of the high-pressure metamorphism. Our preferred interpretation is that the 251 Ma zircons are detrital and thus the Port Macquarie high-pressure metamorphism is constrained to the end of the Permian–Early Triassic. Emplacement of the serpentinite mélange carrying the Rocky Beach high-pressure rocks might have been due to docking of a Permian oceanic island arc (represented by the Gympie terrane in southern Queensland?) and an Andean-style arc at the eastern Australian margin (expressed in the New England Orogen by 260–230 Ma north-south orientated magmatic belts). Alternatively, if the 251 Ma grains are regarded as having grown in thin pegmatites, then the dominant Devonian–Carboniferous detrital population still indicates a maximum age for the high pressure metamorphism of ca. 340 Ma. A ≤ 340 Ma age of metamorphism would still be much younger than the previously suggested ca. 470 Ma (Ordovician) age, which was based on Ar–Ar dating of phengites.  相似文献   

2.
Zircon and apatite fission track data provide constraints on the exhumation history, fault activity, and thermal evolution of the South-Central Chilean active continental margin (36°S–42°S), which we use to assess the tectonic and geomorphic response of the margin to the Andean subduction regime. Several domains with different exhumation histories are identified. The Coastal Cordillera is characterized by uniform and coherent exhumation between Late Triassic (~200 Ma) and late Miocene times, with surprisingly slow average rates of 0.03–0.04 mm/a. Thermal anomalies, related to Late Cretaceous and early Miocene magmatism, have regionally modified fission track age patterns. The Upper Cretaceous thermal overprint is of previously unrecognized significance and extent in the Coastal Cordillera south of 39°S. With the exception of a local but distinct Pliocene to Recent exhumation period in the high-relief Cordillera Nahuelbuta segment between 37°S and 38°S, Cenozoic overall exhumation in the Coastal Cordillera was very slow. The sedimentary record shows that uplift and subsidence here was episodic, with low amplitudes and durations. This rules out large-scale, long-term, Cenozoic accretion, trench-parallel tilting, and tectonic erosion processes in the forearc. The Main Andean Cordillera shows markedly greater long-term exhumation rates than the Coastal Cordillera and, at ~39°S, a steep exhumation gradient. To the south, long-term average Pliocene to Recent exhumation rates of ~1 to ~2 mm/a in the Liquiñe area (39°45′S) are almost an order of magnitude more rapid than average Paleogene to Recent exhumation near Lonquimay (38°30′S) and farther north. While no imprint of the intra-arc Liquiñe-Ofqui Fault Zone on the exhumation pattern is evident, long-term exhumation rates decrease from the crest of the Andes toward the western foothills. Exhumation gradients correlate with climatic gradients, suggesting a causal link to the variable intensity of late Miocene to Pleistocene glacial erosion.  相似文献   

3.
The Mosha and North Tehran faults correspond to the nearest seismic sources for the northern part of the Tehran megacity. The present-day structural relationships and the kinematics of these two faults, especially at their junction in Lavasanat region, is still a matter of debate. In this paper, we present the results of a morphotectonic analysis (aerial photos and field investigations) within the central part of the Mosha and eastern part of the North Tehran faults between the Mosha valley and Tehran City. Our investigations show that, generally, the traces of activity do not follow the older traces corresponding to previous long-term dip–slip thrusting movements. The recent faulting mainly occurs on new traces trending E–W to ENE–WSW affecting Quaternary features (streams, ridges, risers, and young glacial markers) and cutting straight through the topography. Often defining en-echelon patterns (right- and left-stepping), these new traces correspond to steep faults with either north- or south-dipping directions, along which clear evidences for left-lateral strike–slip motion are found. At their junction zone, the two sinistral faults display a left-stepping en-echelon pattern defining a positive flower structure system clearly visible near Ira village. Further west, the left-lateral strike–slip motion is transferred along the ENE–WSW trending Niavaran fault and other faults. The cumulative offsets associated with this left-lateral deformation is small compared with the topography associated with the previous Late Tertiary thrusting motion, showing that it corresponds to a recent change of kinematics.  相似文献   

4.
Marine Quaternary trench and slope sediments were sampled along the margin of the Southern Andes, Chile between 36° and 40°S. Major and trace element contents indicate only minor influence of weathering and transport fractionation. The whole rock composition of the sediments is similar to the average rock of the Cretaceous to Holocene magmatic arc of this section of the southern volcanic zone. Sr, Nd, and Pb isotope composition of the sediments also resembles closely the average composition of the magmatic arc. The contribution of compositionally distinct Palaeozoic crust, which makes up most of the volume of the forearc, is ~0–20% crustal Sr, Nd, and Pb according to the isotope record of the trench and slope sediments. Input of sediments from the continent into the subduction system was dominated by detritus from the magmatic arc at least for the last 20 My on the basis of the Oligocene to Holocene exhumation history of the margin.  相似文献   

5.
The continental shelf and slope of southern Central Chile have been subject to a number of international as well as Chilean research campaigns over the last 30 years. This work summarizes the geologic setting of the southern Central Chilean Continental shelf (33°S–43°S) using recently published geophysical, seismological, sedimentological and bio-geochemical data. Additionally, unpublished data such as reflection seismic profiles, swath bathymetry and observations on biota that allow further insights into the evolution of this continental platform are integrated. The outcome is an overview of the current knowledge about the geology of the southern Central Chilean shelf and upper slope. We observe both patches of reduced as well as high recent sedimentation on the shelf and upper slope, due to local redistribution of fluvial input, mainly governed by bottom currents and submarine canyons and highly productive upwelling zones. Shelf basins show highly variable thickness of Oligocene-Quaternary sedimentary units that are dissected by the marine continuations of upper plate faults known from land. Seismic velocity studies indicate that a paleo-accretionary complex that is sandwiched between the present, relatively small active accretionary prism and the continental crust forms the bulk of the continental margin of southern Central Chile.  相似文献   

6.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at ∼38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between ∼306 and ∼286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to ∼250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

7.
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ.  相似文献   

8.
Mineralogy and Petrology - In the Late Jurassic to Early Cretaceous ophiolite mélange from the Mt. Medvednica (Vardar Ocean) blocks of boninite rocks have been documented. They emerge as...  相似文献   

9.
Two large blocks of red bedded chert identified within the Late Cretaceous–Paleocene Bornova mélange in northern Karaburun Peninsula yielded Jurassic (late Bathonian–early Oxfordian) and Cretaceous (middle–late Albian) radiolarian assemblages. These new data confirm the correlation of the Bornova mélange with the Bornova Flysch Zone (BFZ) and the ?zmir–Ankara mélanges. A review of all previously obtained ages in chert blocks of the BFZ and the ?zmir–Ankara mélanges is provided in order to strengthen this correlation.  相似文献   

10.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   

11.
Cenozoic marine strata occur in the western, eastern, and central parts of the North Patagonian Andes between ∼43°S and 44°S. Correlation of these deposits is difficult because they occur in small and discontinuous outcrops and their ages are uncertain. In order to better understand the age and sedimentary environment of these strata, we combined U–Pb (LA-MC-ICPMS) geochronology on detrital zircons with sedimentologic and paleontologic (foraminifers and molluscs) studies. Sedimentologic analyses suggest that the Puduhuapi Formation on the western flank of the Andean Cordillera was deposited in a deep-marine setting, the Vargas Formation in the central part of the Andes was deposited at outer-neritic or bathyal depths, and the La Cascada Formation on the eastern flank of the range was deposited in a shallow-marine environment. Geochronologic and paleontologic results indicate that the three marine units were deposited during the late Oligocene-early Miocene interval, although it is not clear whether this occurred during one or more marine incursions in the area. The alluvial(?) conglomeratic deposits of the La Junta Formation, exposed in the proximity of the Vargas Formation outcrops, have a maximum depositional age of ∼26 Ma and could have been deposited during the initial stage of subsidence that affected this region prior to the marine transgression over this area. The occurrence of both Pacific and Atlantic molluscan taxa in the La Cascada and Vargas formations suggests that a marine strait connected both oceans during the accumulation of these units. The new data on the age of the Puduhuapi, Vargas, and La Cascada formations indicate that these units may correlate with lower Miocene marine deposits in the forearc of central and southern Chile (Navidad Formation and equivalent units) and on the eastern flank of the Patagonian Andes (Río Foyel Formation and equivalent units). A late Oligocene−early Miocene age for these marine deposits is a reliable maximum age for the deformation and uplift of the North Patagonian Andes.  相似文献   

12.
Patagonia, including the island of Tierra del Fuego, lies in southernmost South America at the junction of the South American, Antarctic, and Scotia tectonic plates. Historical and instrumental records have documented several local earthquakes of damaging magnitude, posing a threat to the rapidly growing population of 300,000 and the expanding industrial and service infrastructure. Short and inaccurate instrumental records of local seismic events and a diffuse epicenter distribution not clearly related to the recognized seismogenic structures have hindered an adequate evaluation of the seismic hazard for this region. To improve this situation, a paleoseismological study was carried out on two gravelly strandplains on the Atlantic coast of Patagonia. Surveying combined ground-probing radar, vertical electric sounding, and seismic refraction. Coseismic normal faults buried beneath the strandplain bodies were revealed and related to the morphology of the strandplains. The faults have probable ages between 0.9 and 6.4 kyr BP and a recurrence rate of about 1 kyr. The more likely source for these structures is the Magallanes-Fagnano fault, a continental transform fault that crosses Tierra del Fuego. The distance of more than 300 km from the buried coseismic structures to the trace of the Magallanes-Fagnano fault argues for high-magnitude earthquake activity on this fault throughout the Holocene. Urban development on soft glacial and alluvial substrates increases the hazard.  相似文献   

13.
Regional mapping (1:50,000) and U-Pb and K-Ar geochronology in the El Indio region refines the knowledge of the distribution, lithostratigraphy, and age of the sedimentary, volcanic, and intrusive rocks that comprise the regionally extensive Pastos Blancos Group which is equivalent to the Choiyoi Group of the Argentine Frontal Cordillera. The Pastos Blancos Group (which we elevate to Group status herein) includes at least two diachronous volcanic–sedimentary sequences: an older felsic volcanic and volcaniclastic unit, the Guanaco Sonso sequence, that is Permian in age, and a younger bimodal volcanic and volcaniclastic unit, the Los Tilos sequence that is Middle Triassic to Early Jurassic. Sedimentary rocks of the Los Tilos sequence are transitional upward into the overlying Early to Middle Jurassic shallow marine limestones of the Lautaro Formation.Intrusions that make up the regionally extensive Permian to Early Jurassic plutons of the Chollay and Elqui-Limarı́ batholiths that were previously mapped as a single plutonic association, the Ingaguás Complex, include in the El Indio region at least three discrete intrusive units. These include: Early Permian (280–270 Ma) biotite granites, Early to Middle Triassic (242–238 Ma) silica-rich leucocratic granites and rhyolitic porphyries that made up the bulk of the Chollay Batholith, and a younger Late Triassic–Early Jurassic unit (221–200 Ma) of mainly intrusive rhyolitic porphyries, extrusive domes, and subordinate mafic intrusions and both felsic and mafic dikes, which are coeval with volcanic rocks of the Los Tilos sequence.Our data show that latest Paleozoic to Early Jurassic intrusive, volcanic, and sedimentary rocks in the El Indio region of the High Andes of Chile between 29–30°S likely formed during extension driven processes after the cessation of Carboniferous–Early Permian subduction along the western edge of Gondwana. These processes began by Late Permian time, but instead of recording a single and protracted magmatic event, as has been previously suggested, rocks that belong to the Pastos Blancos Group and the Ingaguás Intrusive Complex record at least three discrete periods of silicic to bimodal magmatism which occurred during the Middle Permian to Early Jurassic interval.  相似文献   

14.
The intramontane Lauca Basin at the western margin of the northern Chilean Altiplano lies to the west of and is topographically isolated from the well-known Plio-Pleistocene lake system of fluvio-lacustrine origin that covers the Bolivian Altiplano from Lake Titicaca to the north for more than 800 km to the Salar de Uyuni in the south. The Lauca Basin is filled by a sequence of some 120 m of mainly upper Miocene to Pliocene elastic and volcaniclastic sediments of lacustrine and alluvial origin. Volcanic rocks, partly pyroelastic, provide useful marker horizons. In the first period (6–4 Ma) of its evolution, the Lago Lauca was a shallow ephemeral lake. Evaporites indicate temporarily closed conditions. After 4 Ma the lake changed to a perennial water body surrounded by alluvial plains. In the late Pleistocene and Holocene (2-0 Ma) there was only marginal deposition of alluvial and glacial sediments. The basin formed as a half-graben or by pull-apart between 10 and 15 Ma (tectonic displacement of the basal ignimbrite sequence during the Quechua Phase) and 6.2 Ma (maximum K/Ar ages of biotites of tuff horizons in the deepest part of the basin). Apart from this early basin formation, there has been surprisingly little displacement during the past 6 Ma close to the Western Cordillera of the Altiplano. Also, climate indicators (pollen, evaporites, sedimentary facies) suggest that an arid climate has existed for the past 6 Ma on the Altiplano. Together, these pieces of evidence indicate the absence of large scale block-faulting, tilt and major uplift during the past 5–6 Ma in this area.  相似文献   

15.
The northern Yangtze foreland basin system was formed during the Mesozoic continental collision between the North and South China plates along the Mianlue suture. In response to the later phase of intra-continental thrust deformation, an extensive E–W-trending molasse basin with river, deltaic, and lake deposits was produced in front of the southern Qinling–Dabieshan foreland fold-and-thrust belt during the Early–Middle Jurassic (201–163 Ma). The basin originated during the Early Jurassic (201–174 Ma) and substantially subsided during the Middle Jurassic (174–163 Ma). A gravelly alluvial fan depositional system developed in the lower part of the Baitianba Formation (Lower Jurassic) and progressively evolved into a meandering river fluvial plain and lake systems to the south. The alluvial fan conglomerates responded to the initial uplift of the southern Qinling–Dabieshan foreland fold-and-thrust belt after the oblique collision between the Yangtze and North China plates during the Late Triassic. The Qianfoya Formation (lower Middle Jurassic) mainly developed from shore-shallow lacustrine depositional systems. The Shaximiao Formation (upper Middle Jurassic) predominantly consists of thick-bedded braided river delta successions that serve as the main body of the basin-filling sequences. The upward-coarsening succession of the Shaximiao Formation was controlled by intense thrusting in the southern Qinling–Dabieshan fold-and-thrust belt. Palaeogeographic reconstructions indicated an extensive E–W foredeep depozone along the fold-and-thrust belt during the Middle Jurassic (174–163 Ma) that was nearly 150 km wide. The depozone extended westward to the Longmenshan and further east to the northern middle Yangtze plate. The northern Yangtze foreland basin was almost completely buried or modified by the subsequent differential thrusting of Dabashan and its eastern regions (Late Jurassic to Cenozoic).  相似文献   

16.
<正>The Central Asian Orogenic Belt(CAOB)is an immense accretionary orogen and is an important site of Phanerozoic crustal growth(Fig.1a;Seng?r et al.,1993;Jahn,2004;Windley et al.,2007;Xiao et al.,2008;Safonova and Santosh,2014).The West Junggar,situated  相似文献   

17.
The southern contact of the Yarlung-Zangbo Suture Zone ophiolitic belt is marked by a highly sheared serpentinite mélange containing ultramafic blocks. These peridotites can be divided into three main groups. (1) Lherzolites and Cpx-harzburgites contain brownish spinel with Mg# of 0.7–0.75 and Cr# of 0.15–0.27. They resemble fertile abyssal peridotites with generally smooth LREE-depleted and fairly flat MREE–HREE profiles. (2) Transitional harzburgites contain reddish spinels with Mg# of 0.57–0.66 and Cr# of 0.35–0.46. They resemble depleted abyssal or supra-subduction zone peridotites in that MREE–HREE profiles have positive slopes indicative of high degrees of partial melting. LREE profiles vary from depleted to slightly enriched, consistent with some interacting melt. (3) Harzburgites and dunites contain dark reddish spinels with Mg# of 0.47–0.68 and Cr# of 0.40–0.63. They have U-shaped profiles characteristics of interaction between LREE-enriched melt and REE-depleted mantle residues. Fractional melting modelling indicates that Cpx-harburgites may be the residues from 5 to 15% melting, transitional harzburgites from 15 to 23% melting, and harzburgites and dunites from 22 to 29% melting. The South Sandwich arc-basin system is considered a modern analog of the initial geodynamic setting.  相似文献   

18.
Natural Hazards - A total of 36 rock slides were selected for analysing a probable seismic source in the active Andean Precordillera (31°–33°S), the most seismic region of...  相似文献   

19.
A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene–Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45′S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K–Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene–Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene–Lower Eocene contractional tectonism. Overlying Oligocene–Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.  相似文献   

20.
Several orogenic cycles of mountain building and subsequent collapse associated with periods of shallowing and steepening of subduction zones have been recognized in recent years in the Andes.Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge.These processes are related to the increase of the subduction angle during trench roll-back.The Payenia paleoflat-slab,in the southern Central Andes of Argentina and Chile(34°—37°S) recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting,which are related to changes in the subduction geometry.The early stages are associated with magmatic expansion and migration,subsequent deformation and broken foreland.New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills.However,the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting.Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis.The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab.The crustal thickness of the Altiplano is over 60-80 km,whereas Payenia is less than 42 km in the axial part,and near 30 km in the retroarc foothills.The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km~3 in an area larger than 40,000 km2,through 800 central vents and large fissures.These characteristics are unique in the entire present-day Andes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号