首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

2.
《Gondwana Research》2014,25(2):561-584
The aim of this paper is to review the main features of the Meso-Neoarchaean Belomorian eclogite province (BEP) in the northeastern Fennoscandian Shield, including regional and local geology, geochemistry, petrology and geochronology and to compare the Belomorian eclogites with Precambrian eclogites elsewhere. Two eclogite associations have been recognized within Belomorian TTG gneisses: (1) the subduction-type Salma association and (2) Gridino eclogitized mafic dykes. Protoliths of the Salma eclogites represent a sequence comprising gabbro, Fe–Ti gabbro and troctolites, formed at ~ 2.9 Ga in a slow-spreading ridge setting (like the Southwest Indian Ridge). The main subduction and eclogite-facies events occurred between ~ 2.87 and ~ 2.82 Ga. Injection of mafic magma into an active continental margin setting, recorded by the Gridino dyke swarm, is attributed to subduction of a mid-ocean ridge, commencing at 2.87 Ga. Crustal delamination of the active margin and subsequent involvement of the lower crust in subduction between 2.87 and 2.82 Ga ago caused high-pressure metamorphism of the Gridino dykes, culminating in eclogite-facies conditions between 2.82 and 2.78 Ga and accompanying amalgamation of the Karelia, Kola and Khetolamba blocks and formation of the Mesoarchaean Belomorian accretionary–collisional orogen. The clockwise PT paths of the Salma and Gridino associations cross the granulite-facies PT field. Detailed metamorphic studies indicate a complicated post-eclogite history with thermal events and fluid infiltration, related to plume activity at 2.72–2.70, ~ 2.4 and ~ 1.9 Ga. The eclogite assemblages were exhumed to mid-to-lower crustal depths at ~ 1.7 Ga, while erosion or younger tectonic events were responsible for final exhumation to the surface. Comparison of PTt paths and data for peak metamorphic parameters demonstrates the general similarity of the Archaean and Palaeoproterozoic eclogites worldwide and their association with anomalously “hot” environments. The occurrence of high-T conditions during eclogite-facies metamorphism can be attributed to either subduction of a mid-ocean ridge (Archaean, BEP) or to interaction with mantle plumes (Proterozoic).  相似文献   

3.
太华变质杂岩出露于华北克拉通中部造山带最南缘,整体呈近东西向展布。华山地区的太华变质杂岩区岩性复杂多样,保存了至少三个阶段的变质矿物组合。本文对其中的黑云斜长片麻岩和黑云二长片麻岩中的锆石,进行了详细的LA-ICP-MS U-Pb定年;对斜长角闪片麻岩中的变质角闪石,进行了常规40Ar/39Ar定年。定年结果表明:(1)黑云斜长片麻岩中的碎屑锆石记录了两期(~2.3Ga和~2.5Ga)明显的岩浆事件,变质锆石记录了一期(1.87~1.85Ga)变质事件;(2)黑云二长片麻岩中的岩浆锆石U-Pb年龄为2.33Ga和2.31Ga,变质锆石记录的变质年龄为1.96Ga;(3)两个斜长角闪片麻岩样品中,变质角闪石的40Ar/39Ar坪年龄和等时线年龄说明,该地区经历了一期~1.8Ga的变质热事件。这些数据说明,太华变质杂岩也记录了华北克拉通东部陆块与西部陆块之间的碰撞造山过程,不过比中部造山带其它变质杂岩区记录的时间更早,变质作用持续的时间也更长。这暗示了该地区在1.96~1.80Ga期间,经历了一次比较漫长而复杂的构造-变质演化过程。  相似文献   

4.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

5.
华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年   总被引:11,自引:0,他引:11  
华山太华变质杂岩出露于华北克拉通中部造山带最南缘,区内斜长角闪片麻岩呈"透镜状"或"似层状"产出于黑云斜长片麻岩或TTG片麻岩中。大多数含有石榴子石变斑晶的变质岩中,保留了至少3期变形形迹和3个阶段的变质矿物组合。本文对斜长角闪片麻岩和黑云斜长片麻岩中的锆石,进行了SIMS和LA-ICP-MSU-Pb定年。斜长角闪片麻岩的岩浆锆石年龄为2.29Ga,表明其原岩形成于古元古代。斜长角闪片麻岩、黑云斜长片麻岩中的变质锆石及锆石变质增生边年龄为1.94~1.82Ga,表明华山地区比华北克拉通中部造山带中段及北段其他地区普遍记录的约1.85Ga的变质事件,不仅早了约0.1Ga,且变质事件持续达0.1Ga之久。这说明华北中部造山带前寒武纪期间的构造-变质事件是一个比较漫长的复杂过程。  相似文献   

6.
Relationships between reference mafic dikes and deformations in the Gridino zone, Belomorian province, Fennoscandian Shield, make it possible to subdivide the deformations into three groups: pre-dike, synmagmatic, and post-dike. The Neoarchaean eclogite-bearing mélange was formed by disintegration of large eclogite slices in the course of ductile flow, which was associated with synkinematic granitoid magmatism and metamorphism varying from the granulite to amphibolite facies. Exotic blocks, including those of eclogites, are distributed in the TTG gneisses as layers and lenses, whose thicknesses range from a few to a few hundred metres and which are conformable with the foliation. Ductile flow brought the rock complexes to the depth level where brittle–ductile deformations were possible. As a result, certain parts of the mélange were deformed in a more rigid setting. A number of mafic dike swarms were emplaced into relatively cold rocks in an extensional environment in the earliest Palaeoproterozoic. The dikes cut across all earlier structures and are thus an important benchmark for distinguishing Neoarchaean and Palaeoproterozoic processes. Post-dike (~1.9 Ga) tectonic activity was associated with local deformations and discrete metamorphic retrogression to amphibolite facies. None of them significantly affected the pre-existing regional structure.  相似文献   

7.
《Precambrian Research》2001,105(2-4):289-314
The Lapland–Kola Orogen (LKO; former Kola craton) in the northern Fennoscandian Shield comprises a collage of partially reworked late Archaean terranes with intervening belts of Palaeoproterozoic juvenile crust including the classic Lapland Granulite Terrane. Rifting of Archaean crust began at c 2.5–2.4 Ga as attested by layered mafic and anorthositic intrusions developed throughout the northernmost Fennoscandian Shield at this time. Oceanic separation was centred on the Lapland Granulite, Umba Granulite (UGT) and Tersk terranes within the core zone of the orogen. Importantly, SmNd data show that Palaeoproterozoic metasedimentary and metaigneous rocks within these terranes contain an important, generally dominant, juvenile component over a strike length of at least 600 km. Evidently, adjacent Archaean terranes, with negative εNd signatures, contributed relatively little detritus, suggesting a basin of considerable extent. Subduction of the resulting Lapland–Kola ocean led to arc magmatism dated by the NORDSIM ion probe at c 1.96 Ga in the Tersk Terrane in the southern Kola Peninsula. Accretion of the Tersk arc took place before c 1.91 Ga as shown by ion probe UPb zircon dating of post-D1, pre-D2 pegmatites cutting the Tersk arc rocks, juvenile metasediments as well as Archaean gneisses in the footwall of the orogen. Deep burial during collision under high-pressure granulite-facies conditions was followed by exhumation and cooling between 1.90 and 1.87 Ga based on SmNd, UPb and ArAr data. Lateral variations in deep crustal velocity and Vp/Vs ratio, together with reflections traversing the entire crust observed in reprocessed seismic data from the Polar Profile, may be interpreted to image a trans-crustal structure — possibly a fossilised subduction zone — supporting an arc origin for the protoliths of the Lapland Granulite, UGT and Tersk terranes and the location of a major lithospheric suture — the Lapland–Kola suture.  相似文献   

8.
《Gondwana Research》2014,25(2):585-613
The Belomorian eclogite province was repeatedly affected by multiple deformation episodes and metamorphism under moderate to high pressure. Within the Gridino area, high pressure processes developed in a continental crust of tonalite–trondhjemite–granodiorite (TTG) affinity that contains mafic pods and dykes, in which products of these processes are most clearly evident. New petrological, geochemical and geochronological data on mafic and felsic rocks, including PT-estimates, mineral chemistry, bulk rock chemistries, REE composition of the rocks and zircons and U–Pb and Lu–Hf geochronology presented in the paper make it possible to reproduce the magmatic and high-grade metamorphic evolution in the study area. In the framework of the extremely long-lasting geologic history recorded in the Belomorian province (3–1.7 Ga), new geochronological data enabled us to define the succession of events that includes mafic dyke emplacement between 2.87 and 2.82 Ga and eclogite facies metamorphism of the mafic dykes between ~ 2.82 and ~ 2.72 Ga (most probably in the time span of 2.79–2.73 Ga). The clockwise PT path of the Gridino association crosses the granulite- and amphibolite-facies PT fields during the time period of 2.72 Ga to 2.64 Ga. A special aspect of this work concerns the superposed subisobaric heating (thermal impact) with an increase in the temperature to granulite facies conditions at 2.4 Ga. Later amphibolite facies metamorphism occurred at 2.0–1.9 Ga. Our detailed geochronological and petrological studies reveal a complicated Mesoarchaean–Palaeoproterozoic history that involved deep subduction of the continental crust and a succession of plume-related events.  相似文献   

9.
We present results of geochemical studies and isotope dating of eclogites and associated rocks from the Kuru-Vaara quarry, Belomorian Belt, Northeastern Baltic Shield. The southern and northern eclogites are similar in geochemical features. Their protoliths were primitive, mainly high-Mg basalts of oceanic affinity derived from a primitive mantle source rather than from a depleted mantle source characteristic of modern MORB. The post-eclogitic intrusive rocks show obvious evidence for crustal contamination. The eclogite-hosting tonalitetrondhjemite-granodiorite (TTG) gneisses form a coherent series including high-Al and low-Al varieties. The trace element data show that the TTG series formed through the hydrous partial melting of the southern eclogites in the presence of garnet and amphibole in the field of the rutile stability (>15 kbar). Zircons from the southern eclogites exhibit features of their strong re-equilibration by coupled dissolution–repre-cipitation processes but have locally preserved patches with a primary magmatic zoning. The geochemistry of the patches points to the oceanic provenance of protolithic zircons; their isotope dating (SHRIMP-II) yielded a concordant age of 2821 ± 21 Ma. Zircons from the trondhjemite gneiss with geochemical features of Archean adakite were dated at 2805 ± 11 Ma, which suggests the syneclogitic facies origin of the TTG melts. The concordant age of high-pressure zircons from the northern eclogites is 2722 ± 21 Ma, close to the age of the earlier described Gridino eclogites. The overview of the isotopically dated eclogite bodies show the presence of at least three temporally distinct groups of eclogites in the Belomorian Belt, ~2.86–2.87, ~2.82–2.80, and ~2.72 Ga, which is in a good accordance with the known isotopic ages for major crust-forming events in the belt. This, in turn, implies a close genetic relationship between the eclogites and the TTG origin, which might be consistent with the model of the short intermitted events of subduction of the thickened Archean oceanic crust. The presence of HP/UHP eclogites of different ages and the structural style of the Belomorian Belt permit it to be assigned to megamélange belts.  相似文献   

10.
崆岭杂岩中角闪岩类的年代学和地球化学   总被引:2,自引:0,他引:2       下载免费PDF全文
魏君奇  景明明 《地质科学》2013,48(4):970-983
通过崆岭杂岩中角闪岩类的年代学和地球化学研究,以揭示黄陵结晶基底的形成及演化。崆岭杂岩主要由太古代的TTG片麻岩和角闪岩类岩石,以及早元古代孔兹岩系组成,角闪岩类以围岩或包体的形式存在于TTG片麻岩的周围和内部。角闪岩类围岩的全岩Sm-Nd等时线年龄为2 998.9 Ma,原生岩浆锆石的U-Pb年龄为3 013 Ma,均代表角闪岩类原岩的形成时间,且与包体状斜长角闪岩原岩的年龄(3.0 Ga)相同。说明以围岩或包体存在的角闪岩类,其原岩的形成年龄均为3.0 Ga。微量元素和Nd同位素地球化学特征指示,角闪岩类原岩形成的构造环境为大陆初始裂谷环境。角闪岩类岩石中变质新生锆石的U-Pb年龄为2 043 Ma,指示黄陵地区存在第Ⅲ期(2.1~1.9 Ga)角闪岩相热变质事件,且该期热变质作用将松散的陆源碎屑岩等变质为孔兹岩系,从而构成早元古代结晶基底,并与晚太古代稳定陆块焊结在一起,最终完成整个黄陵结晶基底的形成。  相似文献   

11.
U-Pb zircon isotopic data on rocks from the Kandalaksha-Umba zone of the Lapland granulite belt in the Por’ya Bay area constrain the age of the protolith of the apodacite (apotonalite) Opx-Bt granulite gneisses at 2799 ± 4 Ma, and the age of the apogabbronorite Grt-Opx-Cpx-Hbl crystalline schists at 2315 ± 23 Ma. The U-Pb sphene age of the magmatic crystallization of the postmetamorphic granodiorites is 1901 ± 5 Ma. The zircon yields the U-Pb age of the contamination of xenogenic zircons, which were captured during the dissolution of xenoliths of the host Grt-Opx-Cpx-Hbl crystalline schists in granodiorite melt. The comparison of the most important attributes of the endogenic histories of the adjacent Lapland Granulite and Belomorian Mobile belts testifies to their similar evolutionary histories: (1) the protolith age of the acid Opx-Bt granulites of the Lapland Belt (2799 ± 4 Ma) coincides with the protolith age of acid gneisses in the Belomorian Belt (2890-2690 Ma); (2) the ages of the gabbronorite protolith of Grt-Opx-Cpx-Hbl granulites in the Lapland Belt (2315 ± 23 Ma) and gabbro-anorthosite in the Kolvitsa Massif (2462-2423 Ma) are close to the protolith age of eclogitized gabbronorites in the Belomorian coronite suite (2.46–2.36 Ga); (3) the age of granulite metamorphism of acid and mafic rocks in the Lapland Belt is 1912–1925 Ma, and the age of eclogite metamorphism of gneisses and metabasites in the Belomorian Belt is approximately 1.9 Ga, i.e., their metamorphism took place in Svecofennian time; (4) the peak pressure of granulite metamorphism in the Lapland Belt was 9–11 kbar at a temperature of 800–850°C, whereas the peak metamorphic parameters of eclogite metamorphism in the Belomorian Belt were 10–12 kbar and 640–700°C. This means that the metamorphic complexes of the Lapland and Belomorian belts had the same Mezo- and Neoarchean protoliths hosting bodies of Paleoproterozoic gabbroids and were completely formed largely by a single cycle of Svecofennian high-pressure zonal metamorphism within a temperature range from the lowest grade of the eclogite to the granulite facies.  相似文献   

12.
《Precambrian Research》2001,105(2-4):315-330
U–Pb isotopic dating has been carried out on titanites and rutiles from the Karelian Protocraton, the Belomorian Mobile Belt and the intervening junction zone. These are some of the principal Archaean crustal units in the Baltic Shield which have undergone regeneration to various degrees during the Palaeoproterozoic. Palaeoproterozoic resetting of U–Pb titanite ages was complete in the Belomorian Belt and almost complete in the junction zone, while it hardly affected the Karelian Protocraton. In the latter, major crustal cooling occurred at 2.71–2.69 Ga after a major igneous event at 2.74–2.72 Ga, but a tectonothermal event at 2.65–2.64 Ga was less comprehensive. In the Belomorian Belt, a northeastern marginal zone immediately underlying the collisional-thrusting suture of the Lapland-Kola orogen has somewhat higher titanite ages of ca. 1.94–1.87 Ga than the central zone where these ages range between 1.87 and 1.82 Ga. Comparison between the titanite and rutile U–Pb ages suggests a postorogenic cooling rate between 2 and 4°/Ma in these parts of the Belt. The Neoarchaean junction zone between the Karelian and Belomorian provinces was a zone of particularly intense tectonic, magmatic and hydrothermal activity during or after the Palaeoproterozoic Lapland-Kola orogeny. Dominant, newly grown titanites in that zone have ages as young as 1.78–1.75 Ga, and the age differences between the titanite and rutile U–Pb ages are substantially smaller than elsewhere.  相似文献   

13.
U–Pb sensitive high resolution ion microprobe (SHRIMP) dating of zircons from charnockitic and garnet–biotite gneisses from the central portion of the Mozambique belt, central Tanzania indicate that the protolith granitoids were emplaced in a late Archaean, ca. 2.7 Ga, magmatic event. These ages are similar to other U–Pb and Pb–Pb ages obtained for other gneisses in this part of the belt. Zircon xenocrysts dated between 2.8 and 3.0 Ga indicate the presence of an older basement. Major and trace element geochemistry of these high-grade gneisses suggests that the granitoid protoliths may have formed in an active continental margin environment. Metamorphic zircon rims and multifaceted metamorphic zircons are dated at ca. 2.6 Ga indicating that these rocks were metamorphosed some 50–100 my after their emplacement. Pressure and temperature estimates on the charnockitic and garnet–biotite gneisses were obscured by post-peak metamorphic compositional homogenisation; however, these estimates combined with mineral textures suggest that these rocks underwent isobaric cooling to 800–850 °C at 12–14 kbar. It is considered likely that the granulite facies mineral assemblage developed during the ca. 2.6 Ga event, but it must be considered that it might instead represent a pervasive Neoproterozoic, Pan African, granulite facies overprint, similar to the ubiquitous eastern granulites further to the east.  相似文献   

14.
The paper focuses on the metamorphic geology of the oldest crustal eclogites discovered in the Late Archean tonalite-trondhjemite-granodiorite (TTG) complex of the Belomorian Mobile Belt on the Kola Peninsula. Eclogite bodies are, most likely, widespread. We studied one of the key objects, the Kuru-Vaara quarry, where several tens of retrogressed eclogite blocks randomly embedded in the TTG gneisses were stripped at the benches. Based on the field observations, two visually different types of eclogites have been recognized: “southern”, strongly retrogressed coarse-grained, and “northern”, well-preserved fine-grained. The southern eclogite blocks bear evidence of their partial melting with the formation of veins and melt percolation channels. The northern eclogite blocks show no evidence of melting. Despite the significant mineralogic difference, both types of eclogites can be assigned to amphibole eclogite facies. The applied jadeite solubility geobarometers yielded the minimum pressures of ~12 kbar for the northern eclogites and ~14–14.5 kbar for the southern ones. The used geothermometers yielded ~700°C and ~750°C, respectively. But the presence of quartz lamellae in Na-clinopyroxenes in both types of eclogites and their bulk compositions corresponding to high-Mg basalts suggest that the Kuru-Vaara eclogites might have reached the field of ultrahigh-pressure metamorphism. Analysis of the tentative P-T paths of metamorphic evolution for both types of eclogites showed that their burial–exhumation cycle might have taken as short as a few million years. The set of presented data suggests that the formation of the Kuru-Vaara eclogites was related to the subduction of the Archean oceanic crust, which should have differed in composition and structure from the modern oceanic crust.  相似文献   

15.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

16.
《Precambrian Research》2001,105(2-4):143-164
New fieldwork, map interpretation, petrography and single zircon U–Pb geochronology has allowed the identification of different crustal blocks in the Paamiut region, in the southern portion of the West Greenland Archaean Craton. Changes of metamorphic grade from only amphibolite facies to granulite facies (some subsequently retrogressed) corresponds with zones of Archaean high strain ductile deformation ± mylonites. U–Pb zircon dates are presented for the TTG (tonalite, trondhjemite, granodiorite) protoliths from each block in the Paamiut region, and the southern portion of the previously identified Tasiusarsuaq terrane lying to the north. The southern part of the Tasiusarsuaq terrane contains 2880–2860 Ma TTG rocks and underwent amphibolite facies metamorphism. Structurally underneath the Tasiusarsuaq terrane to the south is the Sioraq block containing 2870–2830 Ma TTG rocks partly retrogressed from granulite facies. Structurally underneath and to the south is the Paamiut block, dominated by 2850–2770 Ma granodioritic rocks that have only undergone amphibolite facies metamorphism. Also structurally overlying the Paamiut block, but cropping out separately from the Sioraq block, is the Neria block. This appears to be dominated by 2940–2920 Ma gneisses that have been totally retrogressed from granulite facies and strongly deformed. In the southernmost part of the region the Neria block overlies the greenschist to lowermost amphibolite facies Sermiligaarsuk block that contains the ⩾2945 Ma Tartoq Group. Rocks from all the blocks record ancient loss of Pb from zircons and some new zircon growth at 2820 Ma, interpreted to indicate a high grade metamorphic event at that time, including granulite facies metamorphism in the Sioraq and Neria blocks. The blocks of different metamorphic grade are interpreted to have moved to their current positions after the 2820 Ma metamorphism, explaining the change in metamorphic history across some mylonites and ductile shear zones which deform and retrogress granulite facies textures. The juxtaposed blocks and their contacts were subsequently folded under amphibolite facies conditions. The contacts are cut by undeformed Palaeoproterozoic dolerite dykes which post-date amphibolite facies metamorphism. These results, together with previously published data from the Godthåbsfjord region (north of Paamiut) shows that the North Atlantic Craton in West Greenland from Ivittuut in the south to Maniitsoq in the north (∼550 km) consists of a mosaic of ductile fault-bounded packages that attained their present relative positions in the late Archaean.  相似文献   

17.
Any knowledge about Archaean to Palaeoproterozoic magmatic and metamorphic events in North Korea has the potential to make a significant difference to our understanding of the early tectonic configuration and evolution of East Asia. This zircon U–Pb dating and Hf isotopic study documents multiple Neoarchaean to Palaeoproterozoic tectonothermal events from the meta-igneous complex in the Machollyong ‘Group’ of the Rangnim Massif. Two tonalitic-trondjemitic gneiss samples record a crystallization age of meta-igneous protoliths at ca. 2.56 Ga and multiple migmatization and metamorphism from 2.52 to 1.85 Ga. A meta-dolerite sample yields a magmatic emplacement age of ca. 1.83 Ga. In situ zircon Hf isotopic data indicate that most zircons from the gneiss samples have εHf(t) values from –16.9 to + 3.1 and crustal model ages from 2.84 to 3.73 Ga, whereas magmatic zircons from the meta-dolerite dike record εHf(t) values from –5.2 to + 5.2 and model ages of 2.05–2.44 Ga. The first-recognized Neoarchaean tonalitic-trondjemitic migmatite complex in the Rangnim Massif, together with previously identified tonalitic-trondhjemitic-granodioritic (TTG) rocks in the Rimjingang Belt and the coeval counterparts in western Gyeonggi massif, represents the oldest crustal nuclei in the Korean Peninsula. The multiple tectonothermal events in this study present reliable evidence not only for attesting to consanguinity of the basement between the Korean Peninsula and the North China Craton but also for defining the influence scope of the late Palaeoproterozoic orogeny in the Korean Peninsula.  相似文献   

18.
207Pb/206Pb ages are presented for detrital zircons (Laser Ablation Microprobe ICP‐MS) and whole‐rock Nd isotopic determinations (TIMS) from samples of Neoarchean and Palaeoproterozoic metasedimentary rocks from the Umba granulite terrane and the Keivy domain of the Central Kola composite terrane, Kola Peninsula, north‐western Russia. Three are samples of rocks from the Umba granulite terrane that were deposited ≈ 2.20–1.90 Ga; they contain Archaean detritus, much of it older than 3.0 Gyr, as well as abundant 2.20–1.95‐Gyr‐old material. Deposition may have occurred on the margin of an Archaean craton with an exposed Palaeoproterozoic magmatic arc source, possibly during orogenesis. Two samples from the Keivy domain have remarkably similar, dominantly Archaean detrital zircon age spectra. One was deposited pre‐2.4 Ga, whereas the other was probably deposited post‐2.01 Ga. Both had similar sources, compatible with the proximal country rocks, and possible shallow‐water (?) cratonic margin depositional settings.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987112000564   总被引:10,自引:0,他引:10  
High-pressure(HP) granulites widely occur as enclaves within tonalite-trondhjemitegranodiorite (TTG) gneisses of the Early Precambrian metamorphic basement in the Shandong Peninsula, southeast part of the North China Craton(NCC).Based on cathodoluminescence(CL),laser Raman spectroscopy and in-situ U-Pb dating,we characterize the zircons from the HP granulites and group them into three main types:inherited(magmatic) zircon,HP metamorphic zircon and retrograde zircon.The inherited zircons with clear or weakly defined magmatic zoning contain inclusions of apatites,and 207Pb/206Pb ages of 2915—2890 Ma and 2763—2510 Ma,correlating with two magmatic events in the Archaean basement. The homogeneous HP metamorphic zircons contain index minerals of high-pressure metamorphism including garnet,clinopyroxene.plagioclase,quartz,rutile and apatite,and yield 207Pb/206Pb ages between 1900 and 1850 Ma,marking the timing of peak HP granulite fades metamorphism.The retrograde zircons contain inclusions of orthopyroxene.plagioclase.quartz,apatite and amphibole.and yield the youngest 207Pb/206Pb ages of 1840—1820 Ma among the three groups,which we correlate to the medium to low-pressure granulite fades retrograde metamorphism.The data presented in this study suggest subduction of Meso- and Neoarchean magmatic protoliths to lower crust depths where they were subjected to HP granulite facies metamorphism during Palaeoproterozoic(1900—1850 Ma).Subsequently, the HP granulites were exhumated to upper crust levels,and were overprinted by medium to low-pressure granulite and amphibolite facies retrograde event at ca.1840—820 Ma.  相似文献   

20.
Eclogitic rocks were sampled from two zones in the basement of the Sredna Gora terrane (central western Bulgaria): (1) partially retrogressed eclogites and amphibolites embedded in sillimanite-bearing garnet-micaschists with kyanite relics and migmatites and (2) banded amphibolites associated with muscovite-bearing metagranites within two-mica paragneisses. Rutile relics and oligoclase + green hornblende + epidote ± biotite pseudomorphs after garnet suggest an eclogite facies event. A tholeiitic, transitional affinity was determined for the protoliths, suggesting a continental rift environment, consistent with several eclogite-bearing complexes in the eastern segments of the Variscan belt that arose from the Cambro-Ordovician Gondwana break-up. Decreasing pressure after the eclogite overprint was demonstrated by (a) diopside-albite symplectite, and (b) plagioclase + red–brown to green amphibole kelyphite. The early static re-equilibration, dated to 398 ± 5.2 Ma by 40Ar–39Ar technique, was followed by an amphibolite facies foliation, which was pervasive in amphibolites, gneisses and micaschists, and poorly developed in eclogites. The lithospheric PT paths corresponding to higher and lower metamorphic gradients reflect the juxtaposition of crustal and lithospheric mantle units, respectively. In the build-up of the basement of the Balkan orogen, the physical properties of the lithological complexes might have influenced the collisional pattern of involved microplates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号