首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The propagation of a pulsed elastic wave in the following geometry is considered. An elastic half-space has a surface layer of a different material and the layer furthermore contains a bounded 3-D inhomogeneity. The exciting source is an explosion, modelled as an isotropic pressure point source with Gaussian behaviour in time.
The time-harmonic problem is solved using the null field approach (the T matrix method), and a frequency integral then gives the time-domain response. The main tools of the null field approach are integral representations containing the free space Green's dyadic, expansions in plane and spherical vector wave functions, and transformations between plane and spherical vector wave functions. It should be noted that the null field approach gives the solution to the full elastodynamic equations with, in principle, an arbitrarily high accuracy. Thus no ray approximations or the like are used. The main numerical limitation is that only low and intermediate frequencies, in the sense that the diameter of the inhomogeneity can only be a few wavelengths, can be considered.
The numerical examples show synthetic seismograms consisting of data from 15 observation points at increasing distances from the source. The normal component of the velocity field is computed and the anomalous field due to the inhomogeneity is sometimes shown separately. The shape of the inhomogeneity, the location and depth of the source, and the material parameters are all varied to illustrate the relative importance of the various parameters. Several specific wave types can be identified in the seismograms: Rayleigh waves, direct and reflected P -waves, and head waves.  相似文献   

2.
Summary. The rather abrupt changes in velocity gradient which have sometimes been proposed, notably in the upper mantle and near the base of the mantle, have an effect equivalent to that of one or more second-order discontinuities, where partial reflection occurs due to a change in curvature of the wavefront across these discontinuities. The effect is ignored in the classical WKBJ approximation to the wave functions, but it can be explicitly demonstrated by applying the extended WKBJ method (Langer's approximation) to a piecewise smooth layered model. For the purpose of this study it is convenient to represent the response of such a modelby a generalized reflection coefficient. For a model of one or a system of several second-order discontinuities (approximating a change in velocity gradient over a finite depth interval), the reflection coefficient can be perhaps surprisingly large for long-period waves near their turning point. It is shown that this effect can significantly alter the amplitude decay of SH waves diffracted around the core, in models where a change in velocity gradient near the core—mantle boundary constitutes a low-velocity zone at the base of the mantle; such models have recently been proposed. With the same velocity gradients, the effect on P diffraction is less important. The results for SH diffraction in these models support the conclusion that a small amplitude decay must be explained by a velocity decrease with depth, i.e. a low-velocity zone at the base of the mantle.  相似文献   

3.
4.
Summary. The asymptotic properties of spheroidal mode dispersion at high frequency for fixed phase velocity are related to the intercept times τβ( p ) for P and S waves. If the mode eigenfrequency and the ratio of horizontal to vertical displacement at the surface for the mode are known τα( p ) and τβ( p ) may be separately estimated. If discontinuities exist in the velocity model then 'solotone' effects occur, in frequency at fixed slowness, and in τα( p ), τβ( p ) estimated from the mode dispersion as a function of slowness. The coupling of P and S waves in the spheroidal modes means that the interaction of P waves with upper-mantle discontinuities affects also the estimates of the S wave τβ( p ) values for which the corresponding turning points lie in the lower mantle. The asymptotic formalism also shows that sharp pulses formed by superposition of spheroidal modes correspond to multiple PS reflections.
A study of τα( p ), τβ( p ) estimates derived from spheroidal modes with periods from 45–50s, calculated for model 1066B, shows that even in the presence of strong upper-mantle discontinuities the errors in intercept time are only about one-tenth of a period. The asymptotic properties may there-for provide a useful means of estimating intercept times from modes with a few seconds period as a supplement to travel-time methods.  相似文献   

5.
A numerical method is presented for calculating complete theoretical seismograms, under the assumption that the earth models have velocity, density and attenuation profiles which are arbitrary piece-wise continuous functions of depth only. Solutions for the stress-displacement vectors in the medium are expanded in terms of orthogonal cylindrical functions. Our method for solving the resulting two-point boundary value problems differs from that of other investigators in three ways. First, collocation is used in traditionally troublesome situations, e.g. for highly evanescent waves, at turning points, and in regions having large gradient in material properties. Second, in some situations (high frequencies and small gradients) P and S -waves decouple and we use a different solution method for each wave type, instead of trying to force a single method to find all solutions. For example, above the P - and S -waves turning points an approximate fundamental matrix may be used for each wave type. At the P -wave turning point, the fundamental matrix may be used for the S -wave components but collocation is used for the P -wave. Between the P - and S -wave turning points collocation is used for the evanescent P -wave and the fundamental matrix is used for the S -wave. At the S -wave turning point and below, collocation is used for both. Third, the computational algorithm chooses the appropriate solution method and depth domain upon which it is employed based upon a specified error tolerance and the known inaccuracies of the various approximations employed. Once solutions of the boundary value problems are obtained, a Fourier—Bessel transform is then applied to get back into the space-time domain.  相似文献   

6.
Finite-frequency sensitivity kernels for head waves   总被引:2,自引:0,他引:2  
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana–doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.  相似文献   

7.
Summary. Over 80 earthquakes, exclusively from the Hindukush focal region, which were recorded at the Gauribidanur seismic array (GBA) have been used in this study. These events have similar epicentral distances and a narrow azimuthal range from GBA but varying focal depths from 10 to 240 km. A fault plane dipping steeply (75°) in the north-west direction and striking N 66° E has been investigated on the basis of the spatial distribution of earthquakes in two vertical planes through 68° E and 32° N. Short period P -wave recordings up to 30 s were processed using the adaptive cross-correlation filtering technique. Slowness and azimuthal anomalies were obtained for first arrivals. These anomalies show positive as well as negative bias and are attributed to a steep velocity gradient in the upper mantle between the 400–700 km depth range where the seismic rays have their maximum penetration. Relative time residuals between the stations of GBA owe their origin very near to the surface beneath the array. A search of the signals across the array revealed that most of the events occurring at shallower depths had complex signatures as compared to the deeper events. The structure near the source region, complicated source functions and the scattering confined to the crust—upper mantle near source are mainly responsible for the complexity of the Hindukush earthquakes as the transmission zone of the ray tubes from turning point to the recording station is practically the same.  相似文献   

8.
Elastic scattered waves from a continuous and heterogeneous layer   总被引:3,自引:0,他引:3  
Elastic scattering from a continuous and laterally unbounded heterogeneous layer has been formulated using the Born approximation. A general solution of the scattered wave equation for the above-stated medium has been given in terms of a Fourier integral over plane waves. Far-field asymptotic expressions for weak elastic scattering by a finite, continuous and inhomogeneous layer have been presented which agree with earlier results. For perturbations of the two elastic parameters and the density having the same form of spatial variation, the spectrum of plane waves scattered from a heterogeneous layer is expressed as a product of an 'elastic scattering factor'and a 'distribution factor'. As in earlier results for small-scale heterogeneity, the scattering pattern depends on various combinations of perturbations of elastic parameters and density. In order to show the general characteristics of the elastic wave scattering, some scattering patterns have been given.  相似文献   

9.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   

10.
The Kirchhoff (or tangent plane) approximation, derived from the theoretically complete Kirchhoff–Helmholtz integral representation for the seismic wavefield, has been used extensively for the analysis of seismic-wave scattering from irregular interfaces; however, the accuracy of this method for curved interfaces has not been rigorously established. This paper describes an efficient Kirchhoff algorithm to simulate scattered waves from an arbitrarily curved interface in an elastic medium. Synthetic seismograms computed using this algorithm are compared with exact synthetics computed using analytical formulae for scattering of plane P waves by a spherical elastic inclusion. A windowing technique is used to remove strong internal reverberations from the analytical solution. Although the Kirchhoff method tends to underestimate the total scattering intensity, the accuracy of the approximation improves with increasing value of the wavenumber-radius product, kR . The arrival times and pulse shapes of primary reflections from the sphere are well approximated using the Kirchhoff approach regardless of curvature of the scattering surface, but the amplitudes are significantly underestimated for kR ≤ 5. The results of this work provide some new guidelines to assess the accuracy of Kirchhoff-synthetic seismograms for curved interfaces.  相似文献   

11.
Summary Isotropic earth models are unable to provide uniform fits to the gross Earth normal mode data set or, in many cases, to regional Love-and Rayleigh-wave data. Anisotropic inversion provides a good fit to the data and indicates that the upper 200km of the mantle is anisotropic. The nature and magnitude of the required anisotropy, moreover, is similar to that found in body wave studies and in studies of ultramafic samples from the upper mantle. Pronounced upper mantle low-velocity zones are characteristic of models resulting from isotropic inversion of global or regional data sets. Anisotropic models have more nearly constant velocities in the upper mantle.
Normal mode partial (Frediét) derivatives are calculated for a transversely isotropic earth model with a radial axis of symmetry. For this type of anisotropy there are five elastic constant. The two shear-type moduli can be determined from the toroidal modes. Spheroidal and Rayleigh modes are sensitive to all five elastic constants but are mainly controlled by the two compressional-type moduli, one of the shear-type moduli and the remaining, mixed-mode, modulus. The lack of sensitivity of Rayleigh waves to compressional wave velocities is a characteristic only of the isotropic case. The partial derivatives of the horizontal and vertical components of the compressional velocity are nearly equal and opposite in the region of the mantle where the shear velocity sensitivity is the greatest. The net compressional wave partial derivative, at depth, is therefore very small for isotropic perturbations. Compressional wave anisotropy, however, has a significant effect on Rayleigh-wave dispersion. Once it has been established that transverse anisotropy is important it is necessary to invert for all five elastic constants. If the azimuthal effect has not been averaged out a more general anisotropy may have to be allowed for.  相似文献   

12.
Summary. The limitations of asymptotic wave theory and its geometrical manifestations are newly formalized and scrutinized. Necessary and sufficient conditions for the existence of acoustic and seismic rays and beams in general inhomogeneous media are expressed in terms of new physical parameters: the threshold frequency ω0 associated with the P/S decoupling condition, the cut-off frequency ωc associated with the radiation-zone condition, the total curvature of the wavefront and the Fresnel-zone radius.
The analysis is facilitated with the introduction of a new ancillary functional – the hypereikonal which is capable of representing ordinary as well as evanescent waves. The hypereikonal is the natural extension of the eikonal theory.
With the aid of the above new parameters, simple conditions are obtained for the decoupled far field, the decoupled near field, two point dynamic ray tracing, paraxial wavefields and Gaussian beams.  相似文献   

13.
Generalized Born scattering of elastic waves in 3-D media   总被引:1,自引:0,他引:1  
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed.  相似文献   

14.
Summary. Surface wave behaviour in flat anisotropic structures is first illustrated by performing an exact computation on a simple two-layer model. The variational procedure of Smith & Dahlen is then used to compute the partial derivatives of surface wave phase velocities with respect to the elastic parameters in more realistic earth models. Linear relationships between the partial derivatives for a general anisotropic structure and those for a transversely isotropic structure are derived. When considering waves propagating in a fixed direction, there are only four independent derivatives for Rayleigh waves, and two for Love waves. To avoid the lack of resolution in an inverse method, we propose to use physically constrained models. These results are illustrated by using a model with hexagonal symmetry and a symmetry axis oriented either vertically or horizontally. Quasi-Love- and quasi-Rayleigh-wave partial derivatives are computed for both axis orientations. Modes up to the second overtone and periods ranging between 45 and 130 s have been considered. Finally, anomalies of phase velocity are computed in an oceanic model made of 1/6 oriented olivine crystals with horizontal or vertical preferred orientations of the a -axis.  相似文献   

15.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

16.
Summary. Amplitude spectra of Rayleigh and Love waves in a layered non-gravitating spherical earth have been obtained using as a source, displacement and stress discontinuities. In each layer elastic parameters and density follow specified functions of radial distance and the solutions of the equations of motion are obtained in terms of exponential functions. The Thomson—Haskell method is extended to this case. The problem reduces to simple calculations as in a plane-layered medium. Numerical results of phase and group velocities up to periods of 300 s in various earth models when compared with earlier results (obtained by numerical integration) show that the present method can be used with sufficient accuracy. The differences in phase velocity, group velocity and amplitude (also surface ellipticity in the case of Rayleigh waves) between spherical- and flat-earth models have been investigated in the range 20–300–s period and expressed in polynomials in the period.  相似文献   

17.
The effect of cracks on the elastic properties of an isotropic elastic solid is studied when the cracks are saturated with a soft fluid. A polynomial equation in effective Poisson's ratio is obtained, whose coefficients are functions of Poisson's ratio of the uncracked solid, crack density and saturating fluid parameter. Elastic and dynamical constants used in Blot's theory of wave propagation in poroelastic solids are modified for the introduction of cracks. The effects of cracks on the velocities of three types of waves are observed numerically. The frequency equation is derived for the propagation of Rayleigh-type surface waves in a saturated poroelastic half-space lying under a uniform layer of liquid. Dispersion curves for a particular model of oceanic crust containing cracks are plotted. The effects of variations in crack density and saturation on the phase and group velocity are also analysed.  相似文献   

18.
Summary The displacement response of an elastic half space to a plane pressure wave is examined in order to establish the conditions under which sources of this type can contribute significantly to the long-period seismic noise field. The study is restricted to pressure waves which propagate at velocities well below the seismic wave velocities characteristic of the half space. The numerical studies indicate that pressure waves with amplitudes of 100 μbar or more can contribute significantly to the long-period vertical background noise observed at the surface, provided that the detectors are located on sections of alluvial fill or poorly to moderately indurated sandstones and shales whose thicknesses are greater than about a kilometre. These same waves can also create significant tilt noise on long-period horizontal seismographs located at or near the surface, regardless of the rock type. The seismic disturbances created by pressure waves decay rapidly away from the surface. Therefore, it appears that it may be possible to eliminate the effects of atmospherically generated noise by placing the detectors at moderate depths.  相似文献   

19.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   

20.
Summary. An improved finite difference scheme is applied to simulate wave propagation in the vicinity of a slot normal to the surface of an elastic half space. It provides visualization of the scattered wave pattern at a sequence of time steps, and also the components of displacement as functions of time at a series of observation points.
After being hit by a normally incident plane P pulse, the slot oscillates with two main cycles and two shear-compressional pairs of diffracted waves, and also Rayleigh pulses, are scattered from it. The resulting wavefronts are parallel to the vertical surfaces of the slot and curve in semicircular arcs around the bottom of the slot.
Experimental tests of the theory were performed, using 0.5–6 MHz ultrasonic pulses on duralumin cylinders with surface-breaking slots ranging from 0.5–2 mm in width and from 2–6 mm in depth. The numerical results were confirmed by these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号