共查询到8条相似文献,搜索用时 15 毫秒
1.
An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical–biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack (Katsuwonus pelamis) and bigeye (Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization [Senina, I., Sibert, J., Lehodey, P., 2008. Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: application to skipjack tuna. Progress in Oceanography]. Once this evaluation and parameterization is complete, it may be possible to use the model for management of tuna stocks in the context of climate and ecosystem variability, and to investigate potential changes due to anthropogenic activities including global warming and fisheries pressures and management scenarios. 相似文献
2.
Top-down modeling and bottom-up dynamics: Linking a fisheries-based ecosystem model with climate hypotheses in the Northern California Current 总被引:3,自引:2,他引:3
In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years. 相似文献
3.
Robert M. Suryan David B. Irons Evelyn D. Brown Patrick G.R. Jodice Daniel D. Roby 《Progress in Oceanography》2006,68(2-4):303
We investigated the relative roles of bottom-up and top-down factors in limiting productivity of an upper trophic level marine predator. Our primary working hypothesis was that the reproductive success of black-legged kittiwakes (Rissa tridactyla) a piscivorous, colonial-nesting seabird, was most limited by the abundance, distribution, and species composition of surface-schooling forage fishes. A secondary working hypothesis was that reproductive loss to kittiwake nest predators was greatest during years of reduced prey availability. We report on a broad-scale, integrated study of kittiwakes and their prey in Prince William Sound, Alaska. Our study spanned five breeding seasons (1995–1999) and focused on three colonies that differed in size (ranging from ca. 220 to ca. 7000 breeding pairs) and proximity to each other (50–135 km apart). Kittiwakes in PWS encountered a variety of aquatic habitats, creating a complex foraging environment for breeding birds. We measured kittiwake reproductive success and foraging activities, while simultaneously measuring the abundance of surface schooling forage fishes throughout the foraging range of breeding kittiwakes. The abundance of primary prey species for kittiwakes (Pacific herring Clupea pallasi, Pacific sand lance Ammodytes hexapterus, and capelin Mallotus villosus) varied both annually and regionally, with no one region consistently having the greatest abundance of prey. Likewise, kittiwake reproductive success varied considerably among colonies and years.We found that bottom-up, top-down, timing mismatch, and colony-specific effects were all important to kittiwake productivity. Although bottom-up effects appeared to be strongest, they were not evident in some cases until other effects, such as geographic location (proximity of colony to prey concentrations) and top-down predation, were considered. Important bottom-up effects on kittiwake reproductive success were not only total prey abundance and distribution, but also species, age composition, and chronology of prey occurrence (match/mismatch of timing with critical brood-rearing periods); these effects varied by colony.Top-down effects of predation on kittiwake nest contents (independent of prey abundance) confounded seabird-forage fish relationships. Ultimately, when confounding factors were minimized, non-linear asymptotic relationships were identified between kittiwakes and their prey, with an asymptotic threshold of fish school surface area density of ca. 5 m2/km2, beyond which top-down, physiological, or phylogenetic constraints likely restrict further reproductive output. The integrated approach of our investigations provided a more thorough understanding of the mechanisms underlying predator–prey relationships in the complex marine environment. However, such mechanistic theories can only be tested and refined through long-term research and monitoring of much greater duration than the 5-year study reported herein. 相似文献
4.
Francesco Nencioli Victor S. Kuwahara Tommy D. Dickey Yoshimi M. Rii Robert R. Bidigare 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1252
E-Flux III (March 10–28, 2005) was the third and last field experiment of the E-Flux project. The main goal of the project was to investigate the physical, biological and chemical characteristics of mesoscale eddies that form in the lee of Maui and the Island of Hawai’i, focusing on the physical–biogeochemical interactions. The primary focus of E-Flux III was the cyclonic cold-core eddy Opal, which first appeared in the NOAA GOES sea-surface temperature (SST) imagery during the second half of February 2005. During the experiment, Cyclone Opal moved over 160 km, generally southward. Thus, the sampling design had to be constantly adjusted in order to obtain quasi-synoptic observations of the eddy. Analyses of ship transect-depth profiles of CTD, optical and acoustic Doppler current profiler (ADCP) data revealed a well-developed feature characterized by a fairly symmetric circular shape with a radius of about 80 km. Depth profiles of temperature, salinity and density were characterized by an intense doming of isothermal, isohaline and isopycnal surfaces. Isopleths of nutrient concentrations were roughly parallel to isopycnals, indicating the upwelling of deep nutrient-rich water. The deep chlorophyll maximum layer (DCML) shoaled from a depth of about 130 m in the outer regions of the eddy to about 60 m in the center. Chlorophyll concentrations reached their maximum values in Opal's core region (about 40 km in diameter), where nutrients were upwelled into the euphotic layer. ADCP velocity data clearly showed the cyclonic circulation associated with Opal. Vertical sections of tangential velocities were characterized by values that increased linearly with radial distance from near zero close to the center to a maximum of about at roughly 25 km from the center, and then slowly decayed. The vertical extent of the cyclonic circulation was primarily limited to the upper mixed layer, as tangential velocities decayed quite rapidly within a depth range of 90–130 m. Potential vorticity analysis suggests that only a relatively small (about 50 km in diameter) and shallow (to a depth of approximately 70 m) portion of the eddy is isolated from the surrounding waters. Radial movements of water can occur between the center of the eddy and the outer regions along density surfaces within an isopycnal range of σ–t23.6 () and σ–t24.4 (). Thus the biogeochemistry of the system might have been greatly influenced by these lateral exchanges of water at depth, especially during Opal's southward migration. While the eddy was translating, deep water in front of the eddy might have been upwelled into the core region, leading to an additional injection of nutrients into the euphotic zone. At the same time, part of the chlorophyll-rich waters in the core region might have remained behind the translating eddy and, thus contributed to the formation of an eddy wake characterized by relatively high chlorophyll concentrations. 相似文献
5.
S. C. Gonalves J. C. Marques M. A. Pardal M. F. Bouslama M. El Gtari F. Charfi-Cheikhrouha 《Estuarine, Coastal and Shelf Science》2003,58(4):901-916
The biology, population dynamics, and production of Talorchestia brito were studied at two sandy beaches located on the Atlantic (Portugal) and on the Mediterranean (Tunisia) coasts, respectively. The seasonal variation in abundance and the overall densities were similar in both populations. Reproduction occurred from February to September in the Atlantic, and from March to early November in the Mediterranean. The sex ratio was male biased in the Atlantic, and female biased in the Mediterranean. Based on data from the Atlantic population, both abundance and the proportion of reproductive females were positively correlated with temperature, while the proportion of juveniles in the population was positively correlated with temperature and sediment moisture. On average, individuals from the Atlantic were larger than the ones from the Mediterranean. Life span was estimated at six to nine months in the Atlantic, and five to eight months in the Mediterranean. Talorchestia brito was shown to be a semiannual species, with iteroparous females producing two broods per year, and exhibited a bivoltine life cycle. The minimum age required for males' and females' sexual differentiation and for female sexual maturation was shorter in the Mediterranean. Growth production (P) was estimated at 0.19 g m−2 y−1 ash free dry weight (AFDW; 4.3 kJ m−2 y−1) in the Atlantic population, and 0.217 g m−2 y−1 AFDW (4.9 kJ m−2 y−1) in the Mediterranean one. Elimination production (E) was estimated at 0.35 g m−2 y−1 AFDW (7.9 kJ m−2 y−1) in the Atlantic, and 0.28 g m−2 y−1 AFDW (6.3 kJ m−2 y−1) in the Mediterranean. The average annual biomass (
) (standing stock) was estimated at 0.032 g m−2 in the Atlantic beach, and 0.029 g m−2 in the Mediterranean one, resulting, respectively, in
ratios of 5.9 and 7.5 and
ratios of 10.8 and 9.6. Like other talitrids, T. brito exhibited geographic variation in morphometrical characteristics, sex ratio, growth rates, life span, and reproduction period, with the Atlantic population presenting a slower life history. 相似文献
6.
Agostino Merico Toby Tyrrell Evelyn J. Lessard Temel Oguz Phyllis J. Stabeno Stephan I. Zeeman Terry E. Whitledge 《Deep Sea Research Part I: Oceanographic Research Papers》2004,51(12):1929
Several years of continuous physical and biological anomalies have been affecting the Bering Sea shelf ecosystem starting from 1997. Such anomalies reached their peak in a striking visual phenomenon: the first appearance in the area of bright waters caused by massive blooms of the coccolithophore Emiliania huxleyi (E. huxleyi). This study is intended to provide an insight into the mechanisms of phytoplankton succession in the south-eastern part of the shelf during such years and addresses the causes of E. huxleyi success by means of a 2-layer ecosystem model, field data and satellite-derived information. A number of potential hypotheses are delineated based on observations conducted in the area and on previous knowledge of E. huxleyi general ecology. Some of these hypotheses are then considered as causative factors and explored with the model. The unusual climatic conditions of 1997 resulted most notably in a particularly shallow mixed layer depth and high sea surface temperature (about 4 °C above climatological mean). Despite the fact that the model could not reproduce for E. huxleyi a clear non-bloom to bloom transition (pre- vs. post-1997), several tests suggest that this species was favoured by the shallow mixed layer depth in conjunction with a lack of photoinhibition. A top-down control by microzooplankton selectively grazing phytoplankton other than E. huxleyi appears to be responsible for the long persistence of the blooms. Interestingly, observations reveal that the high N:P ratio hypothesis, regarded as crucial in the formation of blooms of this species in previous studies, does not hold on the Bering Sea shelf. 相似文献
7.
Eric N. Powell Roger Mann Kelsey M. Kuykendall M. Chase Long Jeremy R. Timbs 《Marine Ecology》2019,40(4)
A survey of the region eastward of Nantucket provided an opportunity to examine the cold temperate–boreal boundary along the high‐energy Great South Channel. Here described are the benthic macroinvertebrate community types encountered, with a focus on the influence of climate change on the range boundaries of the benthic biomass dominants and the potential existence of transient multiple stable states. The survey identified three primary community types. The shallowest sites were occupied by a surfclam‐dominated community, comprising an abundance of large (≥150 mm) surfclams, and a few common attached epibiota primarily attached to exposed surfclam shell. Two communities exist at intermediate depths, one dominated by submarket and small market‐size surfclams (<150 mm) and the other, created by mussel mats and their attendant epibiota, crabs, sea urchins, and other mobile epifauna. Mussels are a foundational species, establishing a hard‐bottom terrain conducive to these other denizens in soft‐bottom habitat. Cobbles were nearly ubiquitous, rocks were routinely recovered, and boulders were encountered occasionally. Slow growing attached epibionts were exceedingly rare and mobile epifauna were not obviously associated with these large sedimentary particles; nor were the surfclam or mussel communities. The frequency of barnacle scars suggests sediment scour under the high‐flow regime characteristic of the surveyed region, which voids the habitat potential of these sedimentary particles. The abundance of surfclam shell indicates that surfclams have inhabited the shoaler depths for an extended time; limited shell at deeper sites supports the inference from the absence of large animals that these sites are relatively newly colonized and represent further evidence of an offshore shift in range brought on by increasing bottom water temperatures. The dichotomous nature of the two primary community types at mid‐depths suggests that these two communities represent multiple stable states brought on by the interaction of an invading cold temperate species with the receding boreal fauna resulting in a transient intermingling of species, which, however, structure the habitat into exclusionary stable states rather than overlapping in a co‐occurrence ecotone. 相似文献
8.
Paula S. Haynes Deirdre Brophy David McGrath Roisin O'Callaghan Stephen Comerford Paul Casburn 《Journal of Sea Research》2010,64(4):494-504
Turbot (Psetta maxima Linnaeus) is a high value commercially exploited marine flatfish which occurs in European waters, from the Northeast Atlantic to the Arctic Circle, the Baltic and Mediterranean Sea. In Ireland, turbot are the most valuable commercial non-quota species. Very little is known about their population dynamics in the wild, in particular during the sandy beach nursery phase of the life history. In 2000, a survey was established to assess flatfish species on nursery grounds on the west coast of Ireland. Eleven sandy beaches were assessed for 0+ turbot by beach seining, over an eight year period (2000–2007) during the months of August and September. The objective of the study was to estimate juvenile turbot abundance and size structure to determine if any spatial and annual trends existed. Large scale variability in the recruitment of fish to nursery grounds may be indicative of fluctuations in the adult stock. Turbot were found to recruit to five beaches consistently over the eight year period. Temporal and spatial variability in the relative abundance and length of turbot was discerned, with no apparent overall trend. However, certain nursery grounds were shown in most of the years examined to support higher abundances of turbot in comparison to other areas over the eight year period. Turbot abundances on nursery grounds were significantly correlated with mean spring sea temperatures during the pelagic stage. The condition of turbot did not significantly differ on an annual or spatial scale. Mean densities of 0+ turbot along the Irish coast were found to be similar and at times higher than other areas in Europe, ranging from 0.1 (± 0.3) individuals 1000 m− 2 to 18.5 (± 6.9) individuals 1000 m− 2. Mean turbot total length on beaches ranged from 3.8 cm (± 0.6) to 6.6 cm (± 4.3). The observed spatial and temporal variability in abundance and length highlights the need for long-term studies when assessing juvenile flatfish populations. Results from the present study have provided much needed baseline data on wild juvenile turbot populations which is severely lacking for this species both on an Irish and on a European scale. 相似文献