首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a given family of orbits f(x,y) = c * which can be traced by a material point of unit in an inertial frame it is known that all potentials V(x,y) giving rise to this family satisfy a homogeneous, linear in V(x,y), second order partial differential equation (Bozis,1984). The present paper offers an analogous equation in a synodic system Oxy, rotating with angular velocity . The new equation, which relates the synodic potential function (x,y), = –V(x, y) + % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaaaa!3780!\[\tfrac{1}{2}\]2(x 2 + y 2) to the given family f(x,y) = c *, is again of the second order in (x,y) but nonlinear.As an application, some simple compatible pairs of functions (x,y) and f(x, y) are found, for appropriate values of , by adequately determining coefficients both in and f.  相似文献   

2.
Conditions are found which are satisfied by the coefficients of the expression being a second integral of the motion of an autonomous dynamical system with two degrees of freedom. The coefficientsA, B. , ,E are differentiable functions of the cartesian position coordinatesx, y. The velocity components are denoted by . It is shown that must be constant andB must be of the formB =f(x+y) +g(x-y) wheref, g are arbitrary.Given andB one can always find the remaining coefficientsA, E and also the corresponding potential and second integral. Depending on the specifica case at hand a certain number of arbitrary constants (or arbitrary functions) enter into the potential and the second integral. To each potential (which may be of the separable or nonseparable type in the coordinatesx andy)there corresponds one integral of the above form.  相似文献   

3.
In this paper we prove that Szebehely's equation implies the condition necessary and sufficient in order that the Dainelli-Whittaker formulas be obtained from a potential function. Thus, we prove that Szebehely's equation is not only a necessary condition to be satisfied by the potential U but is also a sufficient condition. This was shown by Broucke and Lass (1977) using a procedure different from ours. We obtain also a first order partial differential equation for the function g2 appearing in the paper of Broucke and Lass. This equation, being of a quite simple structure, is quite adequate for its integration, and this is shown by examples.  相似文献   

4.
The second order partial differential equation which relates the potentialV(x,y) to a family of planar orbitsf(x,y)=c generated by this potential is applied for the case of homogeneousV(x,y) of any degreem. It is shown that, if the functionf(x,y) is also homogeneous, there exists, for eachm, a monoparametric set of homogeneous potentials which are the solutions of an ordinary, linear differential equation of the second order. Iff(x,y) is not homogeneous, in general, there is not a homogeneous potential which can create the given family; only if =f y /f x satisfies two conditions, a homogeneous potential does exist and can be determined uniquely, apart from a multiplicative constant. Examples are offered for all cases.  相似文献   

5.
The red shift and central intensity are given for eleven spectral lines having an observed reduced equivalent widthV ranging fromV=15 toV=200. The computations have been repeated for eight values of the scattering thickness of the chromosphere, from to . A theoretical interpretation of measurements in the Sun is also given.  相似文献   

6.
Approximation formulas are found for and , wherex(t) satisfies ,x(0)=x 0,x(1)=x 1. The results are applied to an example of two-body motion.  相似文献   

7.
A two degree-of-freedom, conservative system is reduced to a single degree-of-freedom, kinematic system with Hamiltonian integral under the change of independent variable: $$dt = \zeta dt (\zeta = \upsilon _x - \upsilon _y )$$ where ζ is the curl (or vorticity) of the velocity field with cartesian inertial componentsu(x, y, t) andv(x, y, t). In the autonomous case whenu t=v t=0, orbits are globally represented by the level curves of an autonomous Hamiltonian functionH(x,y) satisfying a second-order quasilinear partial differential equation (Szebehely's Equation): $$2(H + U)\left( {H_{xx} H_y^2 - 2H_{xy} H_x H_y + H_{yy} H_x^2 } \right) + (H_x U_x + H_y U_y )\left( {H_x^2 + H_y^2 } \right) = 0$$ whereU(x, y) is the autonomous potential function. An inversion of dependent and independent variables reduces this equation to a second-order, ordinary differential equation for a function specifying the orbital curve. The true time variable is recovered by evaluating a quadrature. Fundamental differences exist between this approach and Hamilton-Jacobi theory.  相似文献   

8.
We have shown that the phenomenological models with a cosmological constant of the type Λ=β( ) and Λ=3αH 2, where R is the scale factor of the universe and H is the Hubble constant, are equivalent to a quintessence model with a scalar (φ) potential of the formV∝φ-n, n= constant. The equation of state of the cosmic fluid is described by these parameters (α, β, n) only. The equation of state of the cosmic fluid (dark energy) can be determined by any of these parameters. The actual amount of dark energy will define the equation of state of the cosmic fluid.All of the three forms can give rise to cosmic acceleration depending the amount of dark energy in the universe.  相似文献   

9.
The equation of state of the terrestrial material obtained from seismic data is adopted to construct three zone earth models under hypothesis of variable constant of gravityG as proposed by Dirac. Three hypotheses are investigated: variableG without creation, creation such thatm (mass) G –1, and multiplicative creation,mG –2. It is shown that, with the currently accepted value of the Hubble constant, , and for each hypothesis. On the multiplicative creation, the Earth radius would have been 5100 km, which is in agreement with estimate by some geophysicists.  相似文献   

10.
The McGehee's study of the triple collision of the 3-body problem is here applied for the stability of an equilibrium. Let us consider the homogeneous Lagrangian: $$L = \frac{{\dot x^2 + \dot y^2 }}{2} + U(x,y)$$ whereU is polynomial, with degreek. We establish a necessary and sufficient condition onU for the stability of \(\omega (x = y = \dot x = \dot y = 0)\) .  相似文献   

11.
The transport of thermal radiation has been considered within a finite slab which absorb and scatter anisotropically. The problem involves the space-dependent single-scattering albedow(x). Two approximations are taken forw(x). In the first it is represented in exponential form asw(x)=w 0 exp(–x/s), wherew 0 ands are given constants andx is the optical variable. The second approximation assumes the formw(x) = r=0 R d r * p r (x/a), whered r * are known expansion coefficients anda is the half optical thickness of the slab. Analytic expressions for the forward, backward radiation intensities and fluxes are given in each approximation. The solution of the linear transport equation is performed on the basis of integral Fourier transforms.  相似文献   

12.
A comprehensive period study of the times of minima observed from 1881 to 1985 has been performed. Previous interpretations of the O–C diagram based on light-time effect are confirmed. The light-time orbit of U Oph has been revised using a differential corrections procedure. We get an eccentric orbit withe=0.22±0.06,P=38.7±0.2 yr, and a mass function . In addition, our analysis has revealed short-period apsidal motion (U/P=4515±75) in a slightly eccentric close orbit (e=0.0031±0.0003), allowing a reliable determination of the density concentration coefficient,k 2=0.0059±4. A comparison with stellar evolutionary models calculated by Jeffery (1984) yields the helium contentY=0.28±0.05 and an age of 3×107 yr for the components of U Oph.  相似文献   

13.
A well-known simple model of spin/orbit coupling leads to the equation periodic int and the angle . A mathematical study of this equation is carried out emphasizing the near-resonance behavior and the mechanism of resonance capture; the results are complementary to the author's previous global study showing how to locate the active responances. It is shown that the capture process is to a surprizing degree independent of the functional form off, making some of the detailed hypotheses of previous studies unnecessary.  相似文献   

14.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

15.
The first photoelectric light curve of the eclipsing binary system BW Aqr (F71V+F81V;P=6d.7;V=10 m .31), discovered by Miss Leavitt at the beginning of the century, was obtained. The photometric elements were detemined. The components of this system are considerably evolved stars: the age of the system is about 2×109 yr. It follows from the photometric data that the secondary component should have greater mass than the primary one The zero-age spectral classes of components were F2V and F1V. The system has an elliptical orbit with the eccentricitye=0.18. The angular rate of the apsidal motion (obs = 0.070 deg yr–1) and the corresponding value of the apsidal parameterk 2=0.0090 (the relativistic term included) were found. The derived valuek 2 exceeds by more than a factor of 2 the theoretical coefficient obtained from the modern theory of internal structure of stars with moderate masses .  相似文献   

16.
A principally new, quantitative system of the classification of the spectra of planetary nebulae is proposed. Spectral class of excitation class of the nebulap is determined according to the relative intensities of emission lines (N 1+N 2) [OIII]/4686 HeII and (N 1+N 2) [OIII]/H (Table I, Figure 1). The excitation classes are obtained for 142 planetary nebulae of all classes—low (p=1–3), middle (p=4–8), and high (p=9–12+) (Tables II, III, and IV). An empirical relationship between excitation classp and mean radius of nebulae is discovered (Figure 2). This relationship as well as excitation classp, as an independend parameter, admit an evolutionary interpretation. It is shown that after reaching the highest class of excitationp=12+ the nebulae decrease their class of excitation with the further increases of sizes. The diagram of this relationship has two nearly-symmetric branches — rising and descending with the apogee onp=12+ (Figure 2).  相似文献   

17.
Two models for superluminal radio sources predict sharp lower bounds for the apparent velocities of separation. The light echo model predicts a minimum velocityv min=2c, and the dipole field model predictsv min=4.446c. Yahil (1979) has suggested that, if either of these models is correct, thenv min provides a standard velocity which can be used to determine the cosmological parametersH andq 0. This is accomplished by estimating a lower envelope for the proper motion vs redshift relation. Yahil also argued that the procedure could easily be generalized to include a nonzero cosmical constant . We derive the formulas relating the proper motion to the redshiftz in a Friedmann universe with a nonzero . We show that the determination of a lower envelope for a given sample of measured points yields an estimate of the angle of inclination i for each source in the sample. We formulate the estimation of the lower envelope as a constrained maximum likelihood problem with the constraints specified by the expected value of the largest order statistic for the estimated i . We solve this problem numerically using an off-the-shelf nonlinearly constrained nonlinear optimization program from the NAg library. Assuming =0, we apply the estimation procedure to a sample of 27 sources with measured values , using both the light echo and the dipole field models. The fits giveH=103 km s–1 Mpc–1 for the light echo model andH=46 km s–1 Mpc–1 for the dipole field model. In both cases the fits giveq 0=0.4, but the uncertainty in this result is too large to rule out the possibility thatq 0>0.5. When is allowed to be a free parameter, we obtainH=105 km s–1 Mpc–1 for the light echo model andH=47 km s–1 Mpc–1 for the dipole field model. In both cases the fits giveq 0=–1 and /H 0 2 =6.7, but no significance can be attached to these results because of the paucity of measured data at hight redshifts. For all of the fits, we compute the corresponding estimates of the i and compare the cumulative distribution of these values with that expected from a sample of randomly oriented sources. In all cases we find a large excess of sources at low-inclination angles (high apparent velocities). The expected selection effect would produce such an excess, but the excess is large enough to suggest a strong contamination of the sample by relativistic beam sources which would only be seen at low inclination angles.Applied Research Corporation  相似文献   

18.
Surface photometry of the UV continuum galaxy NGC 838 has been carried out in theB, V system using photographic plates obtained with the 74 Kottamia telescope, Egypt. Isophotes, luminosity profiles, integrated photographic magnitudes, effective diameters and other photometric parameters are derived.The photoelectrically calibrated total apparent magnitudes areB T =13.57 with maximum diameters 1.57×1.34 (at threshold m =27.7 mag.//) andV T =12.91 with maximum diameters 1.54×1.32 (at threshold m =27.7 mag./). The integrated colour index(B–V) T =0.66 and the effective surface brightness e (B=19.0 mag./) and e (V=19.7 mag./. The major axis is at position angle =85°±1°.The nucleus of NGC 838 is quite blue (integrated colour(B–V)=0.41 forr *<0.1) compared to normal galaxies while the colour becomes redder from the nucleus outwards. The UV excess, H emission and radio continuum emission previously observed from this galaxy by other investigators may be attributed to a recent burst of star formation in the nucleus of the galaxy of duration slightly greater than 2×107 yr.  相似文献   

19.
The tensor appearing in the equation of geodesic deviation is computed for the equilateral solution of the general three-body problem. The eigenvalues and eigenvectors ofC k i are determined. It is found that at least one of the eigenvalues is negative, irrespective of the masses of the bodies. This implies that the equilateral solution is not stable. The eigenvectors with positive eigenvalues generate isoenergetic 1-parameter families of quasi-periodic solutions in the neighborhood of the equilateral solution. The relation between the 1-parameter families constructed here and those known from the literature is discussed.  相似文献   

20.
The aim of the present paper is to find the eclipse perturbations, in the frequency-domain, of close eclipsing systems exhibiting partial eclipses.After a brief introduction, in Section 2 we shall deal with the evaluation of thea n (l) integrals for partial eclipses and give them in terms ofa 0 0 ,a 0 0 (of the associated -functions) and integrals; while Section 3 gives the eclipse perturbations arising from the tidal and rotational distortion of the two components. The are given for uniformly bright discs (h=1) as well as for linear and quadratic limb-darkening (h=2 and 3, respectively).Finally, Section 4 gives a brief discussion of the results and the way in which they can be applied to practical cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号