首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Our previous studies of large-scale vortical flows arising in shear flows of stellar accretion disks with Keplerian azimuthal velocity distributions as a result of the development of small perturbations are continued. The development of large-scale instability in an accretion disk is investigated via mathematical modeling. One result obtained is the change of the disk flow structure due to the formation of large vortices. In the limiting case, sufficiently long evolution leads to the formation of several asymmetric spiral structures of the flow of disk matter. The presence of large-scale structures leads to angular-momentum redistribution in the disk.  相似文献   

2.
We consider the origin and development of large-scale turbulence in a shear flow in a stellar accretion disk. The ratio of the kinetic energy of vortices originating in the turbulent flow and the total initial kinetic energy of the rotating disk is essentially constant. The large-scale structures that form are able to redistribute the angular momentum without any appreciable heating of the matter.  相似文献   

3.
We investigate the role of the magnetic field in the collapse of a gas-dust cloud into a massive gravitating object. Observations of one such object (G31.41) indicate that the magnetic field has an hourglass shape oriented along the rotation axis of the matter, due to the freezing-in of the magnetic-field lines in the accreting matter. It is believed that accretion in stellar disks is associated with the transport of angular momentum from the center to the periphery, which could be initiated by large-scale vortex structures arising in the presence of unstable rotational flows of matter. The numerical simulations have established that the equilibrium configuration of a gas-dust disk rotating in a spherically symmetrical gravitational potential is subject to the development of strong instability in the presence of a weak magnetic field. It is shown that the development of instability leads to a transport of angular momentum to the disk periphery by large-scale vortex structures, together with the accretion of matter onto the gravitating object. The magnetic-field lines near the equator take on a chaotic character, but an hourglass configuration is observed near the rotation axis, in agreement with observations.  相似文献   

4.
The results of studies of the over-reflection mechanism for the development of hydrodynamical instability in the accretion disks of close binary stars are presented. The driving of this instability is shown to result in the generation of regular, large-scale, spiral-vortex structures and the development of turbulence in the disk. The derived estimates of the coefficient of turbulent viscosity are in good agreement with the observations, and are able to explain the high rate of angular-momentum transfer and the measured accretion rate. The developed theoretical model is used with the observational data to derive a power-law spectrum for the developed turbulence.  相似文献   

5.
Effects due to the interaction of the steam from the inner Lagrangian point with the accretion disk in a cataclysmic variable star are considered. The results of three-dimensional gas-dynamical numerical simulations confirm that the disk thickness in the vicinity of the interaction with the stream is minimum when the component-mass ratio is 0.6. As a consequence, some of the matter from the stream does not collide with the outer edge of the accretion disk, and continues its motion unperturbed toward the accretor. This part of the stream subsequent interacts (collides) with a thickening of the accretion disk due to the presence of a precessional wave in the disk, leading to the appearance of an additional zone of heating at the disk surface. This additional zone of enhanced luminosity (hot spot) is a direct observational manifestation of the precessional wave in the accretion disk.  相似文献   

6.
Sytov  A. Yu.  Fateeva  A. M. 《Astronomy Reports》2019,63(12):1045-1055

Results of three-dimensional numerical simulations of the gas dynamics of the envelope of the young T Tauri binary star UZ Tau E are considered. The flow structure in the circumstellar envelope of the system is analyzed. It is shown that a regime with the impulsive accretion of matter from the circumstellar disk is realized in the binary system, in which there is a periodic transfer of matter to the accretion disk of the primary component through the accretion disk of the secondary.

  相似文献   

7.
A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.  相似文献   

8.
The formation of gaseous diffusional accretion-decretion disks is an important stage in the evolution of numerous astronomical objects. Matter is accreted onto the object in the accretion part of these disks, while the angular momentum of the accreted matter is transported from the central region to the periphery in the decretion part. Here, we consider general questions connected with the formation and evolution of diffusive accretion-decretion disks in various astrophysical objects. Such disks can be described using nonstationary diffusion models. The phenomenological parameters of these models are the coefficients in the relations for the characteristic turbulent velocity and mean free path of diffusion elements in the disk. We have developed a numerical technique to compute the disk evolution for a number of models (a massive disk, a disk with continuous accretion, a purely decretion disk). Analytical expressions estimating the basic parameters of accretion-decretion disks are presented. We discuss the relationship between the models considered and the classical α model of an accretion disk.  相似文献   

9.
The results of three-dimensional modeling of the flow structure in the classical symbiotic system Z Andromedae are presented. Outbursts in systems of this type occur when the accretion rate exceeds the upper limit of the steady-burning range. Therefore, in order to realize the transition from a quiescent to an active state, it is necessary to find a mechanism capable of sufficiently increasing the accretion rate on the time scales typical for outburst development. Our calculations provide support for a mechanism for the transition from quiescence to outburst in classical symbiotic systems suggested earlier based on two-dimensional calculations (Bisikalo et al., 2002). Our results show that an accretion disk forms in the system for a wind velocity of 20 km s?1. The accretion rate for the solution with the disk is ~22.5–25% of the mass-loss rate of the donor, which is ~4.5?5 × 10?8M yr?1 for Z And. This value is in agreement with the steady-burning range for the white-dwarf masses usually accepted for this system. When the wind velocity increases from 20 to 30 km s?1, the accretion disk is destroyed and the disk material falls onto the accretor surface. This process is followed by an approximately twofold jump in the accretion rate. The resulting growth in the accretion rate is sufficient so as to exceed the upper limit of the steady-burning range, thus bringing the system into an active state. The time during which the accretion rate is above the steady-burning value is in very good agreement with observations. Our analysis leads us to conclude that small variations in the donor wind velocity can lead to the transition from disk accretion to wind accretion and, as a consequence, to the transition from a quiescent to an active state in classical symbiotic stars.  相似文献   

10.
The role of convection in the gas-dust accretion disk around a young star is studied. The evolution of a Keplerian disk is modeled using the Pringle equation, which describes the time variations of the surface density under the action of turbulent viscosity. The distributions of the density and temperature in the polar directions are computed simultaneously in the approximation that the disk is hydrostatically stable. The computations of the vertical structure of the disk take into account heating by stellar radiation, interstellar radiation, and viscous heating. The main factor governing evolution of the disk in this model is the dependence of the viscosity coefficient on the radius of the disk. The computations of this coefficient take into account the background viscosity providing the continuous accretion of the gas and the convective viscosity, which depends on the parameters of the convection at a given radius. The results of computations of the global evolution and morphology of the disk obtained in this approach are presented. It is shown that, in the adopted model, the accretion has burst-like character: after the inner part of the disk ($$R < 3$$ AU) is filled with matter, this material is transferred relatively rapidly onto the star, after which the process is repeated. Our results may be useful for explaining the activity of young FU Ori and EX Lup objects. It is concluded that convection may be one of the mechanisms responsible for the non-steady pattern of accretion in protostellar disks.  相似文献   

11.
The structure and magnitude of the electric field created by a rotating accretion disk with a poloidal magnetic field is found for the case of a vacuum approximation along the axis. The accretion disk is modeled as a torus filled with plasma and a frozen-in magnetic field. The dimensions and location of the maximum electric field as well as the energy of the accelerated particles are found. The gravitational field is assumed to be weak.  相似文献   

12.
We present a qualitative analysis of possible changes in the structure of accretion disks that occur in the transition from hot to cool disks. We suggest that an additional spiral-density wave can exist in the inner parts of the disk, where gas-dynamical perturbations are negligible. We consider the formation of this wave and its parameters. The results of a three-dimensional gas-dynamical simulation of a cool accretion disk are presented; these results confirm the possibility of the formation of a new, “precessional,” spiral wave in the inner regions of a cool accretion disk. Possible observational manifestations of such a wave are discussed.  相似文献   

13.
A technique is proposed for the successive reconstruction of the branches of the strip brightness distribution for a quasar accretion disk via the analysis of observations of high magnification flux events in the multiple quasar images produced by a gravitational lens. The distribution branches are searched for on compact sets of nonnegative, monotonically nonincreasing, convex downward functions. The results of numerical simulations and application of the technique to real observations show that the solution obtained is stable against random noise. Analysis of the light curve of a high magnification event in image C of the gravitational lens QSO 2237+0305 observed by the OGLE group in summer 1999 has yielded the form of the strip brightness distribution in the accretion disk of the lensed quasar. The results are consistent with the hypothesis that the quasar disk was scanned by a fold caustic. The form of the strip distribution is consistent with the expected appearance of an accretion disk rotating around a supermassive black hole.  相似文献   

14.
We have carried out three-dimensional hydrodynamical modeling of the formation of an accretion disk around a compact object due to radiative wind of a massive donor in a close binary system. The massive X-ray binary Cen X-3, which has a precessing accretion disk and may possess relativistic jets, is considered as an example. The computations show that, when the action of the central compact object on the formation of the wind is taken into account, the radiative wind forms an accretion disk with a radius of 0.16 (in units of the orbital separation), which accretes at a rate close to 1 × 10?8 M /yr. In this model, the disk is spherically symmetrical and geometrically thick, with a tunnel going from the accretor to the upper layers of the disk along the accretor’s rotational axis at the disk center. The number density of the gas in the tunnel is five orders of magnitude lower than in the disk. The wind-disk interaction at the outer boundary of the disk produces a strong shock (wind-disk shock) directed toward the donor. The black-body emission of the disk and tunnel is nonstationary, and resembles the outbursts observed in Cen X-3. An analysis of the location of the region of nonstationary emission suggests that the outbursts occur in the wind-disk shock.  相似文献   

15.
We consider disk accretion resulting purely from the loss of angular momentum due to the outflow of plasma from a magnetized disk. In this limiting case, the dissipation due to the viscosity and finite electrical conductivity of the plasma can be neglected. We have obtained self-consistent, self-similar solutions for dissipationless disk accretion. Such accretion may result in the formation of objects whose bolometric luminosities are lower than the flux of kinetic energy in the ejected material.  相似文献   

16.
The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.  相似文献   

17.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

18.
We present the results of three-dimensional gas-dynamical simulations of matter flows in semi-detached binaries after termination of the mass transfer between the components of the system. The structure of the residual accretion disk is studied. When the mass transfer has ended, the quasi-elliptical disk becomes circular and its structure changes: tidal interactions result in the formation of a second arm in the spiral shock wave. In addition, a condensation (blob) moving through the disk with variable velocity is formed. The blob is maintained by interactions with the arms of the spiral shock and exists essentially over the entire lifetime of the disk. We also show that, for a viscosity corresponding to α~0.01 (typical for observed accretion disks), the lifetime of the residual disk is about 50 orbital periods.  相似文献   

19.
Three-dimensional hydrodynamical modeling of the formation of the accretion disk in the SS 433 binary system is carried out with various types of cooling and numerical grids. These computations show that a thick accretion disk with a height of 0.25–0.30 (in units of the component separation) is formed around the compact object, from a flow with a large radius (0.2–0.3 in the same units) that forms in the vicinity of the inner Lagrangian point. This disk has the form of a flattened torus. The number of orbits of a particle of gas in the disk is 100–150, testifying to a minimal influence of numerical viscosity in these computations. The computations also show that the stream flowing from L1 is nearly conservative, and spirals in the disk are not formed due to the influence of the donor gravitation.  相似文献   

20.
A new mechanism is proposed to account for transitions between the quiescent and active states of symbiotic stars. A numerical study of the gas dynamics of the flows in the symbiotic star Z And shows that even small variations in the velocity of the wind from the cool giant can abruptly change the flow structure near the hot component. Such changes alter the accretion regime as the wind velocity increases: disk accretion makes a transition to accretion from the flow. Our calculations indicate that the accretion rate increases by a factor of several tens over a short time interval (~0.1 of the orbital period) during the rearrangement of the flow, when the accretion disk is destroyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号