首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The only known post-Archaean komatiites are found on Gorgona,a small island off the Colombian coast that forms part of theCaribbean oceanic plateau. Mafic and ultramafic intrusions arelocated in the interior of the island. To establish the relationshipbetween intrusive and extrusive phases of ultramafic magmatism,and to help understand how an oceanic plateau is constructed,we undertook the first petrological and geochemical study ofthe intrusive rocks. Rare earth element patterns in gabbrosrange from almost flat to moderately depleted; in dunites andwehrlites, the depletion is more pronounced. These patternsfall midway in the range measured in Gorgona volcanics, whosecompositions vary from slightly enriched to extremely depleted.Nd isotope compositions indicate two distinct mantle sources,one highly depleted, the other less depleted. MgO contents ofparental liquids are estimated from olivine compositions at20–25 % in ultramafic lavas, and 12–13% in the intrusives.Petrographic observations and similarities in trace-elementcontents indicate that the two magma types are comagmatic, relatedthrough olivine fractionation. Modelling of major and traceelements indicates that the primary ultramafic magmas formedby advanced critical melting at high pressure in a rising mantleplume. The plumbing system that fed the Gorgona plateau wascomplex, being characterized by a series of magma chambers atdifferent crustal levels. Mantle-derived ultramafic liquidseither travelled directly to the surface to erupt as komatiiteflows, or were trapped in magma chambers where they differentiatedinto basaltic liquid and mafic to ultramafic cumulates. Gorgonagabbros and peridotites formed in shallow-level examples ofthese intrusions. KEY WORDS: Gorgona Island, Colombia; komatiite; mantle melting; oceanic plateau; melt transport  相似文献   

2.
High-pressure Partial Melting of Mafic Lithologies in the Mantle   总被引:15,自引:2,他引:15  
We review experimental phase equilibria associated with partialmelting of mafic lithologies (pyroxenites) at high pressuresto reveal systematic relationships between bulk compositionsof pyroxenite and their melting relations. An important aspectof pyroxenite phase equilibria is the existence of the garnet–pyroxenethermal divide, defined by the enstatite–Ca-Tschermakspyroxene–diopside plane in CaO–MgO–Al2O3–SiO2projections. This divide appears at pressures above 2 GPa inthe natural system where garnet and pyroxenes are the principalresidual phases in pyroxenites. Bulk compositions that resideon either side of the divide have distinct phase assemblagesfrom subsolidus to liquidus and produce distinct types of partialmelt ranging from strongly nepheline-normative to quartz-normativecompositions. Solidus and liquidus locations are little affectedby the location of natural pyroxenite compositions relativeto the thermal divide and are instead controlled chiefly bybulk alkali contents and Mg-numbers. Changes in phase volumesof residual minerals also influence partial melt compositions.If olivine is absent during partial melting, expansion of thephase volume of garnet relative to clinopyroxene with increasingpressure produces liquids with high Ca/Al and low MgO comparedwith garnet peridotite-derived partial melts. KEY WORDS: experimental petrology; mantle heterogeneity; partial melting; phase equilibrium; pyroxenite  相似文献   

3.
Plume-Associated Ultramafic Magmas of Phanerozoic Age   总被引:19,自引:12,他引:19  
A parameterization of experimental data in the 0·2–7·0GPa pressure range constrains both forward models of potentialprimary magma compositions that exit the melting regime in themantle and inverse models for computing the effects of olivinefractionation for any olivine-phyric lava suite. This is usedto infer the MgO contents of primary magmas from Gorgona, Hawaii,Baffin Island and West Greenland. They typically contain 18–20%MgO for wide variations in assumed peridotite source compositions,but MgO can drop to 14–17% for Fe-enriched sources, andincrease to 24–26% for fractional melts from Gorgona.Primary magmas with 18–20% MgO have potential temperaturesof 1520–1570°C. For Gorgona picrites with 24% MgO,the potential temperature and initial melting pressure wereabout 1700°C and 8·0 GPa, respectively; melting washot and deep, consistent with the plume model. There are importantrestrictions to magma mixing in mantle plumes. Primary magmasthat exit the melting regime are both well-mixed aggregate fractionalmelts and isolated fractional melts. The latter can originatefrom a hot plume axis and be in equilibrium with olivines havingmg-numbers of 93·0–93·6, but they have MgOcontents and thermal characteristics that are difficult to constrain. KEY WORDS: komatiite; picrite; basalt; MORB; olivine; mantle plumes; primary magmas; equilibrium melting; accumulated fractional melting  相似文献   

4.
The genesis of basaltic magmas   总被引:29,自引:2,他引:29  
This paper reports the results of a detailed experimental investigation of fractionation of natural basaltic compositions under conditions of high pressure and high temperature. A single stage, piston-cylinder apparatus has been used in the pressure range up to 27 kb and at temperatures up to 1500° C to study the melting behaviour of several basaltic compositions. The compositions chosen are olivine-rich (20% or more normative olivine) and include olivine tholeiite (12% normative hypersthene), olivine basalt (1% normative hypersthene) alkali olivine basalt (2% normative nepheline) and picrite (3% normative hypersthene). The liquidus phases of the olivine tholeiite and olivine basalt are olivine at 1 Atmosphere, 4.5 kb and 9 kb, orthopyroxene at 13.5 and 18 kb, clinopyroxene at 22.5 kb and garnet at 27 kb. In the alkali olivine basalt composition, the liquidus phases are olivine at 1 Atmosphere and 9 kb, orthopyroxene with clinopyroxene at 13.5 kb, clinopyroxene at 18 kb and garnet at 27 kb. The sequence of appearance of phases below the liquidus has also been studied in detail. The electron probe micro-analyser has been used to make partial quantitative analyses of olivines, orthopyroxenes, clinopyroxenes and garnets which have crystallized at high pressure.These experimental and analytical results are used to determine the directions of fractionation of basaltic magmas during crystallization over a wide range of pressures. At pressures corresponding to depths of 35–70 km separation of aluminous enstatite from olivine tholeiite magma produces a direct fractionation trend from olivine tholeiites through olivine basalts to alkali olivine basalts. Co-precipitation of sub-calcic, aluminous clinopyroxene with the orthopyroxene in the more undersaturated compositions of this sequence produces derivative liquids of basanite type. Magmas of alkali olivine basalt and basanite type represent the lower temperature liquids derived by approximately 30% crystallization of olivine-rich tholeiite at 35–70 km depth. At depths of about 30 km, fractionation of olivine-rich tholeiite with separation of both olivine and low-alumina enstatite, joined at lower temperatures by sub-calcic clinopyroxene, leads to derivative liquids with relatively constant SiO2 (48 to 50%) increasingly high Al2O3 (15–17%) contents and retaining olivine + hypersthene normative chemistry (5–15% normative olivine). These have the composition of typical high-alumina olivine tholeiites. The effects of low pressure fractionation may be superimposed on magma compositions derived from various depths within the mantle. These lead to divergence of the alkali olivine basalt and tholeiitic series but convergence of both the low-alumina and high-alumina tholeiites towards quartz tholeiite derivative liquids.The general problem of derivation of basaltic magmas from a mantle of peridotitic composition is discussed in some detail. Magmas are considered to be a consequence of partial melting but the composition of a magma is determined not by the depth of partial melting but by the depth at which magma segregation from residual crystals occurs. Magma generation from parental peridotite (pyrolite) at depths up to 100 km involves liquid-crystal equilibria between basaltic liquids and olivine + aluminous pyroxenes and does not involve garnet. At 35–70 km depth, basaltic liquids segregating from a pyrolite mantle will be of alkali olivine basalt type with about 20% partial melting but with increasing degrees of partial melting, liquids will change to olivine-rich tholeiite type with about 30% melting. If the depth of magma segregation is about 30 km, then magmas produced by 20–25% partial melting will be of high-alumina olivine tholeiite type, similar to the oceanic tholeiites occurring on the sea floor along the mid-oceanic ridges.Hypotheses of magma fractionation and generation by partial melting are considered in relation to the abundances and ratios of trace elements and in relation to isotopic abundance data on natural basalts. It is shown that there is a group of elements (including K, Ti, P, U, Th, Ba, Rb, Sr, Cs, Zr, Hf and the rare-earth elements) which show enrichment factors in alkali olivine basalts and in some tholeiites, which are inconsistent with simple crystal fractionation relationships between the magma types. This group of elements has been called incompatible elements referring to their inability to substitute to any appreciable extent in the major minerals of the upper mantle (olivine, aluminous pyroxenes). Because of the lack of temperature contrast between magma and wall-rock for a body of magma near to its depth of segregation in the mantle, cooling of the magma involves complementary processes of reaction with the wall-rook, including selective melting and extraction of the lowest melting fraction. The incompatible elements are probably highly concentrated in the lowest melting fraction of the pyrolite. The production of large overall enrichments in incompatible elements in a magma by reaction with and highly selective sampling of large volumes of mantle wall-rock during slow ascent of a magma is considered to be a normal, complementary process to crystal fractionation in the mantle. This process has been called wall-rock reaction. Magma generation in the mantle is rarely a simple, closed-system partial melting process and the isotopic abundances and incompatible element abundances of a basalt as observed at the earth's surface may be largely determined by the degree of reaction with the mantle or lower crustal wall-rocks and bear little relation to the abundances and ratios of the original parental mantle material (pyrolite).Occurrences of cognate xenoliths and xenocrysts in basalts are considered in relation to the experimental data on liquid-crystal equilibria at high pressure. It is inferred that the lherzolite nodules largely represent residual material after extraction of alkali olivine basalt from mantle pyrolite or pyrolite which has been selectively depleted in incompatible elements by wall-rock reaction processes. Lherzolite nodules included in tholeiitic magmas would melt to a relatively large extent and disintegrate, but would have a largely refractory character if included in alkali olivine basalt magma. Other examples of xenocrystal material in basalts are shown to be probable liquidus crystals or accumulates at high pressure from basaltic magma and provide a useful link between the experimental study and natural processes.  相似文献   

5.
Melts in the mantle modeled in the system CaO-MgO-SiO2-CO2 at 2.7 GPa   总被引:1,自引:1,他引:0  
The effect of CO2 on mantle peridotites is modeled by experimental data for the system CaO-MgO-SiO2-CO2 at 2.7 GPa. The experiments provide isotherms for the vapor-saturated liquidus surface, bracket piercing points for field boundaries on the surface, and define the positions and compositions of isobaric invariant liquids on the boundaries (eutectics and peritectics). CO2-saturated carbonatitic liquids (>80% carbonate) exist through approximately 200 °C above the solidus, with a transition to silicate liquids (>80% silicate) within ∼75 °C across a plateau on the liquidus. Carbonate-rich magmas cannot cross the silicate-carbonate liquidus field boundary, so the carbonate liquidus field is therefore a forbidden volume for liquid magmas. This confirms the fact that rounded, pure carbonates in mantle xenoliths cannot represent original liquids. A P-T diagram is constructed for the carbonation and melting reactions for mineral assemblages corresponding to lherzolite, harzburgite, websterite and wehrlite, with carbonate, CO2 vapor (V), or both. The changing compositions of liquids in solidus reactions on the P-T diagram are illustrated by the changing compositions of eutectic and peritectic liquids on the liquidus surface. At an invariant point Q (∼2.8 GPa/1230 °C), all peridotite assemblages coexist with a calcite-dolomite solid solution (75 ± 5% CaCO3) and a dolomitic carbonatite melt [57% CaCO3 (CC), 33% MgCO3 (MC), 10% CaMgSi2O6 (Di)], with 63% CC in the carbonate component. At higher pressures, dolomite-lherzolite, dolomite-harzburgite-V, and dolomite-websterite-V melt to yield similar liquids. Magnesian calcite-wehrlite is the only peridotite melting to carbonatitic liquids (more calcic) at pressures below Q (∼70 km). Dolomitic carbonatite magma rising through mantle to the near-isobaric solidus ledge near Q will begin to crystallize, releasing CO2 (enhancing crack propagation), and metasomatizing lherzolite toward wehrlite. Received: 20 March 1998 / Accepted: 7 July 1999  相似文献   

6.
Experimental melting studies were conducted on a nepheline mugearitecomposition to pressures of 31 kbar in the presence of 0–30%added water. A temperature maximum in the near-liquidus stabilityof amphibole (with olivine) was found for a water content of3·5 wt % at a pressure of 14 kbar. This is interpretedto have petrogenetic significance for the derivation of nephelinemugearite magmas from nepheline hawaiite by amphibole-dominatedfractional crystallization at depth within the lithosphericmantle. Synthetic liquids at progressively lower temperaturesrange to nepheline benmoreite compositions very similar to thoseof natural xenolith-bearing high-pressure lavas elsewhere, andsupport the hypothesis that continued fractional crystallizationcould lead to high-pressure phonolite liquids. Independent experimentaldata for a basanite composition modeled on a lava from the sameigneous province (the Newer Basalts of Victoria) permit theinference that primary asthenospheric basanite magmas undergopolybaric fractional crystallization during ascent, and mayevolve to liquids ranging from nepheline hawaiite to phonoliteupon encountering cooler lithospheric mantle at depths of 42–50km. Such a model is consistent with the presence in some evolvedalkalic lavas of both lithospheric peridotite xenoliths indicativeof similar depths and of megacryst suites that probably representdisrupted pegmatitic segregations precipitated from precursoralkalic magmas in conduit systems within lithospheric mantle. KEY WORDS: experiment; high pressure; alkalic magmas; amphibole; nepheline mugearite; basanite; lithosphere  相似文献   

7.
Primary basalts and magma genesis   总被引:1,自引:0,他引:1  
Three Eocene lavas from Skye, NW Scotland, have been subjected to anhydrous experimental studies within their melting ranges at pressures up to 30 kb. Two of these, an olivine-phyric magnesian alkali basalt and a near-aphyric Mg-poor transitional basalt, appear to show four-phase points on their liquidi at high pressures which are thought to have genetic significance. From experimental and mineralogical evidence, the magnesian basalt is postulated to be a primary magma, erupted without significant compositional change from its genesis by slight partial melting of a relatively Fe-rich spinel lherzolite upper mantle at about 60 km depth. The liquid seems to have had a reaction relationship with Ca-poor pyroxene (pigeonite) in the residual lherzolite. Partial crystallization of batches of this magma, delayed during its ascent at depths of about 40 km, is thought to have given rise to the Mg-poor basaltic liquids. The third lava studied experimentally, a sparsely olivine-phyric hawaiite, does not have olivine on the liquidus in any part of its anhydrous P-T diagram and therefore cannot have been derived under anhydrous conditions from olivine-saturated sources. The mineralogy and chemistry of the lavas are used to support an hypothesis that the hawaiites are products of partial crystallization of pockets of basalt magma at depths approximating to the crust/ mantle boundary beneath Skye, with rising to sufficient values to make the residual liquids comparatively rich in normative feldspar. Finally, the genesis of all other Skye Eocene lavas is reviewed in the light of the new experimental data.  相似文献   

8.
In order to define the conditions for the formation of immiscible carbonatite magmas in the lithosphere and in the crust, we have conducted phase equilibrium experiments to determine the effect of pressure and temperature on the silicate-carbonate liquid miscibility gap in bulk compositions appropriate for magmas in the upper mantle. A primitive (magnesian) nephelinite (NEPH) was used as a starting material, mixed with carbonates. Experiments were made with mixtures in the joins NEPH-dolomite-Na2CO3 (NEPH-Dol-NC) at 1.0 to 2.5 GPa, and NEPH-calcite (NEPH-CC) at 1.0 GPa. The miscibility gap was intersected by the join NEPH-Dol-NC (liquids with olivine), but not by NEPH-CC. Together with previous results for the Mg-free system (Na2O-CaO-Al2O3-SiO2-CO2), it was established that the size of the miscibility gap for magnesian compositions increases with decreasing pressures from depths of ˜100 km to ˜ 35 km; it increases further as compositions are changed by decreasing Mg/Ca. The maximum CaCO3 in liquids associated with the miscibility gap is 50 wt % for Mg-bearing liquids, and 80 wt % for Mg-free liquids. There is no experimental evidence for nearly pure-CaCO3 immiscible liquids, but abundant evidence for the precipitation of rounded calcite crystals from carbonate-rich liquids. The join NEPH-CC locates a piercing point on the liquidus field boundary for coprecipitation of olivine and calcite at NEPH50CC50 (wt %), part of the silicate-carbonate liquidus field boundary which defines the locus of liquids formed from carbonate-peridotites. The miscibility gap results are compared with magmas formed during partial fusion of CO2-bearing mantle peridotites, and during fractional crystallization of mantle-derived magmas. None of the probable magma paths in mantle processes intersects the miscibility gap. CO2-bearing mantle-derived alkalic magmas such as nephelinites and melilitites may fractionate during uprise through the mantle and crystallization within the crust. The compositions of these evolved nephelinites and phonolites approach the silicate side of the miscibility gap, confirming the probable generation of immiscible, alkalic carbonate-rich liquids at crustal pressures. Received: 29 January 1996 / Accepted: August 14, 1996  相似文献   

9.
Cerro Azul, one of the large shield volcanoes in the westernGalápagos archipelago, has erupted a wide range of tholeiiticto alkalic basalts. These diverse compositions include someof the most primitive yet reported from the western archipelagoand are unlike those of the other, well-studied, neighboringvolcanoes of Sierra Negra and Alcedo, which have erupted basaltof fairly uniform composition. Major- and trace-element modelingshows that Cerro Azul, Alcedo and Sierra Negra share a similardepth of melting and source composition. Modeling also revealsthat there are small, systematic differences in the extent ofpartial melting between the volcanoes that can be related totheir distance from the proposed plume center below the westernmostisland of Fernandina. However, even though melts segregatingfrom the plume in the western Galápagos reflect a narrowrange of temperatures and source compositions, there are widevariations in the enrichments of major and trace elements betweenCerro Azul, Alcedo and Sierra Negra that cannot be attributedto mantle processes. We believe the observed intershield geochemicaldifferences result from magma supply and cooling rates thatare unique to each volcano, and reflect the variations in lithospherictransport and storage processes across the western archipelago. KEY WORDS: basalt; Galápagos; magma supply; mantle plume; ocean island  相似文献   

10.
The compositions of liquids coexisting with experimentally grown crystals of olivine, plagioclase, clinopyroxene, orthopyroxene, leucite, spinel, rhombohedral oxide, melilite and potassium feldspar are used to define, through mass action expressions of liquid/solid equilibrium, compositional derivatives of the Gibbs free energy of mixing of naturally occuring silicate liquids as a function of temperature, pressure and the fugacity of oxygen. The available experimental data describe these derivatives over a range of compositions which includes basic magmas. Therefore, for silicate liquids in this composition range, the topology of the Gibbs free energy of mixing can be approximated from experimental determinations of its derivatives. The majority of the existing thermodynamic data on the liquid phase is consistent with the application of regular solution theory to model the free energy of mixing. Strictly symmetric, temperature and pressure independent, regular solution interaction parameters are calibrated from this phase equilibrium data using regression techniques which have their basis in inverse theory. These techniques generate numerically stable interaction parameters which incorporate inter-variable correlation and account for experimental uncertainty. The regular solution model fits the available data on anhydrous silicate liquids to within the accuracy of the thermodynamic database +/?550 cals). Extensions to regular solution theory allow water solubility in more silica rich liquids to be modelled somewhat less accurately (+/?750 cals). The topology of the excess free energy of mixing surface is strongly asymmetric, possessing a single multicomponent saddle point which defines a spinodal locus. Given this prediction of a multicomponent spinode, a mathematical procedure based upon minimisation of the Gibbs free energy of mixing is developed for the calculation of the compositions of coexisting immiscible liquids. Predicted binodal compositions substantially agree with elemental liquid/liquid partitioning trends observed in lavas. Calculations suggest that an immiscible dome, in temperature-composition space, intersects the liquidus field of the magma type tholeiite. Immiscible phenomena are predicted at sub-liquidus temperatures for the bulk compositions of more basic or alkalic lavas, but are absent in more siliceous rock types for temperatures of the metastable liquid down to 900 K. The regular solution model is used in four petrological applications. The first concerns a prediction of the binary olivine-liquid phase diagram. The calculated geometry exhibits a minimum near Fa75, which, though not in accord with experimental results on the pseudobinary system, compares quite favorably with olivine-liquid phase equilibria interpreted from rhyolites, namely that the olivine phenocrysts of rhyolites are more iron rich than their coexisting liquids. The second petrological example concerns estimating the depth of the source regions of several basic lavas whose compositions cover a range from ugandite to basaltic andesite. The third application is a calculation of the saturation temperatures and compositions of plagioclase and olivine in four experimental basaltic liquids and a prediction of the liquidus temperatures and first phenocryst compositions of the Thingmuli lava series of Eastern Iceland. Lastly, enthalpies of fusion are computed for a variety of stoichiometric compounds of geologic interest. These demonstrate good agreement with calorimetrically measured quantities  相似文献   

11.
Anhydrous phase relations were determined at 1 atm and 10 to 15 kbar for primitive high-alumina basalts (79–35g and 82–72f) from Giant Crater at Medicine Lake volcano. These compositions are multiply saturated with olivine+augite+plagioclase+spinel+/-orthopyroxene near the liquidus at about 11 kbar. Experiments on mixtures of sample 79–35g with orthopyroxene and olivine determined the location of the multiple saturation boundaries where liquid coexists with the assemblage olivine+augite+orthopyroxene+plagioclase at 10 kbar and olivine+augite+orthopyroxene+spinel at 15 kbar. The mix experiments showed that primitive Medicine Lake high alumina basalts (HABs) are close in composition to liquids in equilibrium with a mantle lherzolite source containing olivine+augite+ orthopyroxene+spinel+plagioclase at 11 kbar. Orthopyroxene observed as a near liquidus phase in an 11 kbar experiment on sample 82–72f supports this conclusion. The most primitive HABs from Medicine Lake are low in K2O (0.07 wt.%), high in MgO (>10 wt.%) and Ni (231 ppm), and have light-rare earth element depletions and large ion lithophile element enrichments. A model for the origin of these near-primary high-alumina basalts is that they are partial melts of a MORB-like mantle lherzolite source that has been enriched by a fluid component derived from the subducted slab. The HAB magma segregated from its mantle residue just below the base of the crust near the crust-mantle boundary.  相似文献   

12.
Major and trace element data for the Tertiary, Shiant IslesMain Sill, NW Scotland, are used to discuss its complex internaldifferentiation. Vertical sections through the sill exhibitsharp breaks in chemistry that coincide with changes in texture,grain size and mineralogy. These breaks are paired, top andbottom, and correspond to the boundaries of intrusive units,confirming a four-phase multiple-intrusion model based on fieldrelations, petrography, mineralogy and isotopes. Whole-rockchemistry is consistent with this model and necessitates onlyminor revisions to the intrusive and differentiation mechanismspreviously proposed. The rocks contain strongly zoned minerals(e.g. olivine Fo70–5, clinopyroxene Mg# = 75–5,plagioclase An75–5) indicating almost perfect fractionalcrystallization, but whole-rock compositions do not show suchextreme variations. Thus, while residual liquids became highlyevolved in situ, they mainly became trapped within the crystalnetwork and did not undergo wholesale inward migration. Someinward (mainly upward) concentration of residual liquids didoccur to form a ‘sandwich horizon’, but the morevolatile-rich, late-stage liquids that did not crystallize insitu appear to have migrated to higher levels in the sill toform pegmatitic horizons. Parental liquid compositions are modelledfor the intrusive units and it is concluded that the originalparent magma formed by partial melting of upper mantle thatwas more depleted in LREE than the sources of most ScottishTertiary basaltic rocks. Incompatible trace elements in thepicrodolerite–crinanite intrusive unit support isotopeevidence that its parent magma was contaminated by crustal material.Attempts to reconcile the chemical characteristics of the sillwith a recently proposed petrogenetic model based on a singleintrusion of magma differentiated by novel, but controversial,processes fail comprehensively. It is predicted that the complexpetrogenetic history of the Shiant Isles sill is not unusualand could become the model for other large (>50 m thick)sills. KEY WORDS: alkali basalt; differentiation; geochemistry; multiple intrusion; Shiant Isles; sill  相似文献   

13.
The melting of undepleted mantle peridotite proceeds through a temperature interval which decreases with increasing pressure. If liquidus and solidus actually meet in the range 100–150 Kb, as suggested by Herzberg (1983), peridotite must transform there directly to a melt of its own composition. Thermodynamic analysis shows that such a liquidus/solidus meeting would be very unlikely in a system as chemically complex as mantle peridotite and would require that unanticipated phase equilibrium relations suppress all incongruent melting behavior. But Takahashi and Scarfe's (1985) preliminary experiments suggest that the upper mantle itself may indeed have a special composition with respect to phase equilibrium relations between liquids and solids at very high pressure. If so, mantle peridotite composition cannot be generated as a crystal accumulate or melting residue, because these two popular theories of origin are difficult to reconcile with a supposed eutecticlike composition. If upper mantle peridotite were itself a solidified liquid composition produced either as a partial melt or, more likely, as a crystallization residue of some more primitive melt composition representative of the whole mantle, an approach of liquidus to solidus might be expected at high pressure although the phase relations of Herzberg (1983) and Herzberg and O'Hara (1985) remain implausible.  相似文献   

14.
Genesis of the calc-alkaline igneous rock suite   总被引:11,自引:1,他引:11  
A high pressure experimental study of the partial melting fields of synthetic high-alumina olivine tholeiite, high-alumina quartz tholeiite, basaltic andesite, andesite, dacite and rhyodacite under dry and wet conditions has been conducted in order to investigate possible origins of the calc-alkaline series from the upper mantle. Detailed analyses of crystallizing phases using the electron microprobe has enabled calculation of the liquid line of descent in these compositions at various pressures.At 27–36 kb garnet and clinopyroxene are the liquidus or near-liquidus phases in dry tholeiite, basaltic andesite and andesite, while quartz is the liquidus phases in dry dacite and rhyodacite. Under wet conditions at 27 kb garnet, not quartz, is the liquidus phase in the dacite. Qualitatively these results show that the low melting fraction of a quartz eclogite at 27–36 kb under dry conditions is of andesitic composition whereas under wet conditions it is rhyodacitic or granodioritic. At these pressures under dry conditions the andesite liquidus lies in a marked low temperature trough between the more basic and more acid compositions. Quantitatively, the calculated compositions of liquid fractionates for varying degrees of melting of the quartz eclogite bulk composition broadly follow the calc-alkaline trend.At 9–10 kb under wet conditions sub-silicic amphibole and pyroxenes are the near-liquidus phases in tholeiite and basaltic andesite compositions. Calcic plagioclase and garnet occur nearer the solidus. The calculated liquid fractionates follow the calc-alkaline trend and demonstrate that the calc-alkaline series may be derived by the partial melting of amphibolite at lower crustal depths under wet conditions , Or by the fractional crystallization of a hydrous basalt magma at similar depths.These experimental results support two complementary hypotheses for the derivation of the calc-alkaline igneous rock suite from the mantle by a two stage igneous process. In the first stage of both hypotheses large piles of basalt are extruded on the earth's surface. Subsequently this pile of basalt may, under dry conditions, transform to quartz eclogite, sink into the mantle and finally undergo partial melting at 100–150 kms depth. This partial melting gives rise to the calc-alkaline magma series leaving a residuum of clinopyroxene and garnet. Alternatively, if wet conditions prevail in the basalt pile and the geotherms remain high, partial melting of the basalt may take place near the base of the pile, at about 10 kb pressure . The liquids so formed constitute the calc-alkaline suite and the residuum consists of amphibole, pyroxenes and possibly minor garnet and calcic plagioclase. Both models may be directly linked to the hypothesis of sea-floor spreading.  相似文献   

15.
Cr-poor and Cr-rich megacryst suites, both comprising of varying proportions of megacrysts of orthopyroxene, clinopyroxene, garnet, olivine, ilmenite and a number of subordinate phases, coexist in many kimberlites, with wide geographic distribution. In rare instances, the two suites occur together on the scale of individual megacryst hand specimens. Deformation textures are common to both suites, suggesting an origin related to the formation of the sheared peridotites that also occur in kimberlites. Textures and compositions of the latter are interpreted to reflect deformation and metasomatism within the thermal aureole surrounding the kimberlite magma in the mantle. The megacrysts crystallized in this thermal aureole in pegmatitic veins representing small volumes of liquids derived from the host kimberlite magma, which were injected into a surrounding fracture network prior to kimberlite eruption. Close similarities between compositions of Cr-rich megacryst phases and those in granular lherzolites are consistent with early crystallization from a primitive kimberlite liquid. The low-Cr megacryst suite subsequently crystallized from residual Cr-depleted liquids. However, the Cr-poor suite also reflects the imprint of contamination by liquids formed by melting of inhomogeneously distributed mantle phases with low melting temperatures, such as calcite and phlogopite, present within the thermal aureole surrounding the kimberlite magma reservoir. Such carbonate-rich melts migrated into, and mixed with some, but not all, of the kimberlite liquids injected into the mantle fracture network. Contamination by the carbonate-rich melts changed the Ca–Mg and Mg–Fe crystal–liquid distribution coefficient, resulting in the crystallization of relatively Fe-rich and Ca-poor phases. The implied higher crystal-melt Mg–Fe distribution coefficient for carbonate-rich magmas accounts for the generation of small volumes of Mg-rich liquids that are highly enriched in incompatible elements (i.e. primary kimberlite magmas). The inferred metasomatic origin for the sheared peridotites implies that this suite provides little or no information regarding vertical changes in the thermal, chemical and mechanical characteristics of the mantle.  相似文献   

16.
The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense “primary” picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures—a conclusion supported by calculation of the melt composition, which would need to be extracted in order to explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of “pseudospidergrams,” a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ∼95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.  相似文献   

17.
One of the goals of igneous petrology is to use the subtle andmore obvious differences in the geochemistry of primitive basaltsto place constraints on mantle composition, melting conditionsand dynamics of mantle upwelling and melt extraction. For thisgoal to be achieved, our first-order understanding of mantlemelting must be refined by high-quality, systematic data oncorrelated melt and residual phase compositions under knownpressures and temperatures. Discrepancies in earlier data onmelt compositions from a fertile mantle composition [MORB (mid-oceanridge basalt) Pyrolite mg-number 87] and refractory lherzolite(Tinaquillo Lherzolite mg-number 90) are resolved here. Errorsin earlier data resulted from drift of W/Re thermocouples at1 GPa and access of water, lowering liquidus temperatures by30–80°C. We demonstrate the suitability of the ‘sandwich’technique for determining the compositions of multiphase-saturatedliquids in lherzolite, provided fine-grained sintered oxidemixes are used as the peridotite starting materials, and thechanges in bulk composition are considered. Compositions ofliquids in equilibrium with lherzolitic to harzburgitic residueat 1 GPa, 1300–1450°C in the two lherzolite compositionsare reported. Melt compositions are olivine + hypersthene-normative(olivine tholeiites) with the more refractory composition producinga lower melt fraction (7–8% at 1300°C) compared withthe model MORB source (18–20% at 1300°C). KEY WORDS: mantle melting; sandwich experiments; reversal experiments; anhydrous peridotite melting; thermocouple oxidation; olivine geothermometry  相似文献   

18.
We use the results of elevated pressure melting experiments to constrain the role of melt/mantle reaction in the formation of tholeiitic magma from Kilauea volcano, Hawaii. Trace element abundance data is commonly interpreted as evidence that Kilauea tholeiite is produced by partial melting of garnet lherzolite. We experimentally determine the liquidus relations of a tightly constrained estimate of primary tholeiite composition, and find that it is not in equilibrium on its liquidus with a garnet lherzolite assemblage at any pressure. The composition is, however, cosaturated on its liquidus with olivine and orthopyroxene at 1.4 GPa and 1425 °C, from which we infer that primary tholeiite is in equilibrium with harzburgite at lithospheric depths beneath Kilauea. These results are consistent with our observation that tholeiite primary magmas have higher normative silica contents than experimentally produced melts of garnet lherzolite. A model is presented whereby primary tholeiite forms via a two-stage process. In the first stage, magmas are generated by melting of garnet lherzolite in a mantle plume. In the second stage, the ascent and decompression of magmas causes them to react with harzburgite in the mantle by assimilating orthopyroxene and crystallizing olivine. This reaction can produce typical tholeiite primary magmas from significantly less siliceous garnet lherzolite melts, and is consistent with the shift in liquidus boundaries that accompanies decompression of an ascending magma. We determine the proportion of reactants by major element mass balance. The ratio of mass assimilated to mass crystallized (Ma/Mc) varies from 2.7 to 1.4, depending on the primary magma composition. We use an AFC calculation to model the effect of melt/harzburgite reaction on melt rare earth and high field strength element abundances, and find that reaction dilutes, but does not significantly fractionate, the abundances of these elements. Assuming olivine and orthopyroxene have similar heats of fusion, the Ma/Mc ratio indicates that reaction is endothermic. The additional thermal energy is supplied by the melt, which becomes superheated during adiabatic ascent and can provide more thermal energy than required. Melt/harzburgite reaction likely occurs over a range of depths, and we infer a mean depth of 42 km from our experimental results. This depth is well within the lithosphere beneath Kilauea. Since geochemical evidence indicates that melt/harzburgite reaction likely occurs in the top of the Hawaiian plume, the plume must be able to thin a significant portion of the lithosphere. Received: 4 February 1997 / Accepted: 27 August 1997  相似文献   

19.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   

20.
Buhlmann et al. (Can J Earth Sci 37: 1629–1650, 2000) studied the minettes and xenoliths from the Milk River area of southern Alberta, Canada. Based on previous work, they hypothesized that the minettes were derived from a source containing phlogopite?+?clinopyroxene?±?olivine, at pressures ≥1.7?GPa. To test this hypothesis, liquidus experiments were performed on a primitive minette between 1.33 and 2.21?GPa and between 1,300 and 1,400?°C to constrain the mineralogy of its source region. We found a multiple saturation point along the liquidus at 1.77 GPa and 1,350?°C, where the liquid coexists with orthopyroxene and olivine. Neither phlogopite nor clinopyroxene were found to be liquidus phases, which is inconsistent with Buhlmann et al.’s hypothesis. We suggest that our minette is not primary, but had re-equilibrated with harzburgitic mantle subsequent to formation. In such a scenario, partial melting of a veined source containing mica and clinopyroxene occurred at or near the base of the Wyoming craton (~200?km). Minimal heating or the introduction of hydrous fluids into the source would be required to induce partial melting. Rapid ascent rates, coupled with slow cooling rates, of the “primary minette magma” would preserve the high temperature observed in our experiments. At ~58?km, our “primary minette magma” likely stalled and re-equilibrated with the harzburgite surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号