首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacific tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, significant wave height, and salinity(SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass(NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct influence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the influence of tropical cyclones on the NYSCWM.  相似文献   

2.
We addressed the mesoscale structure variation of the central South China Sea (SCS) with the measurements by a long-lived Argo float and a high-resolution ATLAS buoy during 1998–2002. T-S diagram indicates cooling and freshening events in 2000 and 2001 with lower salinity (0.5–0.8) and lower temperature (1–1.7°C). Significant decrease in the net heat flux and increase in the precipitation suggest that the cooling and freshening is due to extra forcing by the atmosphere. Additional to large year-to-year changes, intraseasonal variability is moderate in the research area. The axis of the maximum intraseasonal temperature and salinity signals are mainly located on the thermocline. Typically, amplitude and period of intraseasonal temperature is about 2°C and 40–60 days, and that of salinity is 0.3–0.5 and 35–60 days. Rapidly-changing winds, heat flux, and precipitation are critical in controlling the intraseasonal fluctuations of the mixed layer of the area. Studies on heat and freshwater balance in the mixed-layer further suggest that horizontal advection plays an important role in intraseasonal fluctuation in the upper ocean. In addition, the energetic mesoscale propagation radiated from the east boundary is linked to the intraseasonal variability in winter.  相似文献   

3.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

4.
Wang  Tongyu  Zhang  Shuwen  Chen  Fajin  Ma  Yonggui  Jiang  Chen  Yu  Jie 《中国海洋湖沼学报》2021,39(1):14-25
Upper ocean responses to the passage of sequential tropical cyclones over the northwestern South China Sea(SCS) in 2011 were investigated using satellite remote sensing data,Argo reanalysis data,and an array of mooring data.We found that the sea surface low temperature region lasted for more than 38 days and two phytoplankton blooms occurred after the passage of sequential tropical cyclones.The upper ocean cooling reached 2-5℃ with a right-side bias was observed along the typhoon track to about 200 km.The maintenance of low temperature region and the two phytoplankton blooms were mainly driven by upwelling and near-inertial turbulence mixing induced by the sequential tropical cyclones.The first phytoplankton bloom appeared on the 7~(th) day after the passage of the three tropical cyclones,and the chlorophyll-a(chl-a) concentration increased by 226%,which may be mainly driven by typhoons induced upwelling.The second phytoplankton bloom occurred on the 30~(th) day,the chl-a concentration increased by290%.Further analysis suggested that only the typhoons with similar characteristics as Nesat and Nalgae can induce strong near-inertial oscillation(NIO).Strong turbulent mixing associated with the near-inertial baroclinic shear instability lasted for 26 days.The measured mean eddy diffusivity in the upper ocean was above 10~(-4) m~2/s after typhoon Nesat.Enhancement of the turbulent mixing in the upper ocean helped to transport nutrient-rich cold waters from the deep layer to the euphotic layer,and is a maj or mechanism for the long-term maintenance of low temperature region as well as the second phytoplankton bloom.  相似文献   

5.
1 INTRODUCTION Argo floats are instruments that move freely with the ocean current at fixed parking depths and cycle from a profiling depth to the sea surface at regular time intervals. While rising to the surface, these autonomous floats take profiles of…  相似文献   

6.
7.
Characteristics of cyclones and explosively developing cyclones (or ’bombs’) over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysis (FNL) data produced by the National Centers for Environmental Prediction (NCEP) of the United States. Statistical results show that both cyclones and explosively developing cyclones frequently develop in January, and most of them occur within the latitudinal zone between 55°S and 70°S. These cyclones gradually approach the Antarctic Continent from December to February. Generally cyclones and bombs move east-southeastward with some exceptions of northeastward movement. The lifetime of cyclones is around 2-6 d, and the horizontal scale is about 1000 km. Explosive cyclones have the lifetime of about 1 week with the horizontal scale reaching up to 3000 km. Compared with cyclones developed in the Northern Hemisphere, cyclones over the southern ocean have much higher occurrence frequency, lower central pressure and larger horizontal scale, which may be caused by the unique geographical features of the Southern Hemisphere.  相似文献   

8.
Many previous studies of the impact of oceanic environmental factors on chlorophyll(CHL)in a specific region focused on sea surface temperature(SST),mixed-layer depth(MLD),or wind stress(WS) alone.In this study,relationship between CHL and all those environmental factors(SST,MLD,and WS) in the open ocean was quantified for five regions within the subtropical gyres and the variation trend of 13-year(2003-2015) was analyzed using satellite observations and Argo measurements.The correlation analysis results show that MLD was correlated positively with CHL,SST was correlated negatively with CHL,and the correlation between CHL and WS was either positive or negative.Based on the significance of the correlations,models representing the relationships were established using the multiple linear regression and analyzed,showing that the environmental factors were the major determinants of CHL change.The regression coefficients show that both SST and MLD have remarkable effect on CHL.Our derived models could be used to diagnose the past changes,understand present variability,and predict the future state of CHL changes based on environmental factors,and help us understand the dynamics of CHL variation in the open ocean.  相似文献   

9.
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.  相似文献   

10.
From the synopical CTD sections in the WOCE PR11 repeated cruises, the South Pacific Subtropical Mode Water (SPSTMW) has been identified in the region of the Tasman Front Extension (TFE) around 29?S to the east of Australia. In the depth range of 150-250 m, the SPSTMW appears as a thermostad with vertical temperature gradient lower than 1.6℃(100 m)-1 and a tem- perature range of 16.5-19.5℃ and as a pycnostad with PV lower than 2×10-10 m-1 s-1 and a potential density range of 25.4-26.0 kg m-3. Like the subtropical mode waters in the North Atlantic and North Pacific, the formation of the SPSTMW is associated with the convective mixing during the austral wintertime as manifested from the time series of the Argo floats. And cold water entrains into the mixed layer with the deepening mixed layer from September to the middle of October. During the wintertime formation process, mesoscale eddies prevailing in the TFE region play an important role in the SPSTMW formation, and have a great effect on the SPSTMW distribution in the next year. The deeper (shallower) mixed layer in wintertime, consistent with the depressed (uplifted) permanent thermocline, is formed by the anticyclonic (cyclonic) eddies, and the substantial mode water thicker than 50 m is mainly found in the region of the anticyclonic eddies where the permanent thermocline is deeper than 450 m.  相似文献   

11.
The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12°×1/12°) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.  相似文献   

12.
The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track archives and high resolution (1/4 degree) temperature analyses of the world's oceans in this paper In the monthly mean genesis positions of TCs from 1945 to 2005 in the SCS, the mean sea surface temperature (SST) was 28.8℃ and the mean depth of 26℃ water was 53.1 m. From the monthly distribution maps of genesis positions of TCs, SST and the depth of 26℃ water in the SCS, we discovered that there existed regions with SST exceeding 26℃ and 26℃ water depth exceeding 50m where no tropical cyclones formed from 1945 to 2005 in the SCS, which suggests that there were other factors unfavorable for TC formation in these regions.  相似文献   

13.
The general features of the seasonal surface heat budget in the tropical western Pacific Ocean, 20° S–20°N, western boundary −160°E, were documented by Qu (1995) using a high-resolution general circulation model (GCM, Semtner & Chervin, 1992) and existing observations. Close inspection of the smaller areas, with the whole region further partitioned into six parts, showed different mechanisms balance the seasonal surface heat budget in different parts of the region. The results of study on five subregions are detailed in this article. In the equatorial (3°S–3°N) and North Equatorial Countercurrent (3°N–9°N) region, the surface heat flux does not change significantly throughout the year, so the surface heat content is determined largely by vertical motion near the equator and roughly half due to horizontal and half due to vertical circulation in the region of the North Equatorial Countercurrent (NECC). In the other subrigions (9°N–20°N, 20°S–11°S and 11°S–3°S), however, in addition to ocean dynamics, surface heat flux can also play a major role in the seasonal variation of sea surface temperature (SST). The remotely forced baroclinic waves and their effect on the surface heat storage in the model are also investigated. Comparison with observations indicates that the model wave activities are reasonably realistic. Contribution No. 2396 from the Institute of Oceanology, Chinese Academy of Sciences. This study was supported by the Australian CSIRO Division of Oceanography and the National Natural Science Foundation of China (No. 49176255)  相似文献   

14.
Continuous observation of sea water temperature and current was made at Wenchang Station (19°35′N, 112°E) in 2005. The data collected indicate vigorous internal waves of both short periods and tidal and near-inertial periods. The temperature and current time series during 18-30 September were examined to describe the upper ocean internal wave field response to Typhoon Damrey (0518). The strong wind associated with the typhoon, which passed over the sea area about 45 km south of Wenchang Sta- tion on 25 September, deepened the mixed layer depth remarkably. It decreased the mixed layer temperature while increasing the deep layer temperature, and intensified the near-inertial and high-frequency fluctuations of temperature and current. Power spectra of temperature and current time series indicate significant deviations from those obtained by using the deep ocean internal wave models characterized by a power law. The frequency spectra were dominated by three energetic bands: around the inertial frequency (7.75× 10-6 Hz), tidal frequencies (1.010-25 to 2.4×10-5 Hz), and between 1.4×10-4 and 8.3 × 10-4 Hz. Dividing the field data into three phases (before, during and after the typhoon), we found that the typhoon enhanced the kinetic energy in nearly all the frequency bands, es- pecially in the surface water. The passage of Damrey made a major contribution to the horizontal kinetic energy of the total surface current variances. The vertical energy density distribution, with its peak value at the surface, was an indication that the energy in- jected by the strong wind into the surface current could penetrate downward to the thermocline.  相似文献   

15.
热带气旋作为一种海上灾害性天气,对“海上丝绸之路”海上航运影响重大。本文基于西北太平洋和北印度洋1990—2017年的热带气旋路径数据,结合热带气旋风场参数模型,利用缓冲区分析、叠加分析等GIS空间分析技术,系统研究了“海上丝绸之路”主要海域、主要海区、关键通道受热带气旋影响频次以及热带气旋危险性的时空分布特征。主要结论:① “海上丝绸之路”主要海域受热带气旋影响严重,表现在热带气旋影响范围广、影响频次高,其中西北太平洋较北印度洋受热带气旋影响更为严重,危险性更大;② 西北太平洋的15°N—30°N,120°E-—145°E海域热带气旋危险性最高;③ 热带气旋危险性季节变化较为明显,秋夏两季危险性较高,冬春两季危险性较低,在夏秋两季各月份中,7、8、9、10月危险最高;④ 在各海区中,中国东部海区热带气旋危险最高,其次是南海、日本海、孟加拉湾、阿拉伯海,而红海和波斯湾不受热带气旋影响;在各关键通道中,吕宋海峡热带气旋危险性最高,其次是台湾海峡、对马海峡、宗谷海峡、鞑靼海峡、保克海峡、霍尔木兹海峡,而马六甲海峡和曼德海峡无热带气旋危险。  相似文献   

16.
The three dimensional structure of the western boundary current east of the Vietnam coast was determined from measurements by Argo profiling floats which deployed near the east of the Vietnam Coast in October 2007. The trajectories of the Argo floats provided robust evidence that there does exist southward flowing current along the Vietnam coast. The southward current begins at about 15°N, 111°E, flowing along the 1 000 m isobath and extending to 5°N south. The estimated surface and parking depth velocities obtained from the floats suggest that this southward current can extend to 1 000 m depth. The mean surface velocity of the western boundary current is about 49 cm/s, with the maximum speed exceeding 100 cm/s occurring at 11.6°N, 109.5°E in the direction of 245°. The mean parking depth (1 000 m) velocity is 12–16 cm/s with the maximum speed of 36 cm/s occurring at 12.1°N, 109.7°E in the direction of 239°.  相似文献   

17.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

18.
Observational data obtained during the TOGA-COARE IOP in the “warm pool” area of the Western Tropical Pacific were used to analyze some characteristics of the intraseasonal variations in the mixed layer. The influence of westerly burst and rainfall on SST, salinity and mixed layer depth are discussed. There are two pairs of counteracting processes in the “warm pool” mixed layer: (1) The increase of mixed layer depth caused by local westerly bursts and the decrease of mixed layer depth caused by larger scale easterly relaxation; (2) the vertical mixing by local wind and the strong stratification due to rainfall in the mixed layer. Some possible mechanisms through the interactions between the intraseasonal time scale variations of the oceanic mixed layer and atmospheric low frequency oscillations are revealed. Supported by National Natural Science Foundation of China (49276250) and LASG of Beijing.  相似文献   

19.
A tangential wind profile for simulating strong tropical cyclones with MM5   总被引:5,自引:0,他引:5  
A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCARAFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms^-1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which only the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones‘ intensity can be obviously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.  相似文献   

20.
This paper reports the approprite ranges of Mg^2 ,Ca^2 and their ratio Mg^2 /Ca^2 in mixed seawater for rearing of Penaeus japonicus larvae,The ranges for the above three indices are 1150-1450mg/L,360-440mg/L and 2.8-3.4,respectively,the proper salinity range of mixed seawater is 22.1-33.9 obtained by mixing estuarine water and concentrated seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号