首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the pulse broadening by scattering at 40, 60, and 111 MHz for the pulsars PSR B0809+74, B0950+08, B1919+21, and B2303+30. The frequency dependence of the scatter-broadening parameter is analyzed based on these measurements and data from the literature. The dependence obtained purely from the literature data is not consistent with the theory, and the scattering magnitudes differs considerably from the data of the catalog of 706 pulsars of Taylor et al. A two-component model for the frequency dependence of the scattering of the pulsar radio emission in the interstellar medium is proposed. Allowing for the presence of two scattering scales removes both inconsistencies between the observational data for these four pulsars and differences between the observed and theoretical frequency dependences for the scattering, as well as the need to invoke anomalous scattering magnitudes. The data of the catalog of Taylor et al. need to be corrected for the difference in the scattering magnitudes in the two branches of the frequency dependence.  相似文献   

2.
The frequency dependence of scattering of the radio emission from the Crab pulsar at the low frequencies 111, 63, and 44 MHz has been measured and analyzed during sporadic enhancements of scattering and dispersion measure in October–December 2006 and December 2008. The frequency dependence of the scattering differs from the generally accepted dependence, τ sc (ν) ∝ ν γ , where γ = −4.0 for Gaussian and γ = −4.4 for power-law Kolmogorov distributions of inhomogeneities of the scattering medium. In intervals of enhancement, the exponent of the frequency dependence γ decreased to −3.2(0.2) at the above frequencies. A model is proposed in which this is due to the presence of a dense plasma structure in the nebula in the line of sight toward the pulsar, in which scattering of the radio emission on turbulence differs from scattering in the interstellar medium. It is shown that the frequency dependence of scattering of the radio emission can be weaker in a dense plasma than in the rarefied interstellar medium.  相似文献   

3.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

4.
We review high spatial resolution microwave observations of solar active regions, coronal loops and flares. Observations of preflare active regions are presented; in particular we discuss the interpretations of reversal of polarization at the flare site and the role of newly emerging flux in triggering the onset of flares. We discuss the spatial locations of microwave burst emitting regions; loops or arcades of loops appear to be the sites of flare energy release in microwave bursts. We provide direct observational evidence of magnetic reconnection as the primary cause of acceleration of electrons in microwave bursts.  相似文献   

5.
Two solar radio bursts exhibiting narrow-band millisecond pulsations in intensity and polarization are analyzed. There were considerable time delays between the left-and right-circularly polarized components of the radio emission. The observed oscillations of the degree of polarization are due to the different group velocities of the ordinary and extraordinary modes in their propagation from the source to the observer; the frequency dependence of the delay is in excellent agreement with the theoretically calculated group delay in a magnetoactive plasma. It unambiguously follows that the pulsed radio emission is generated near the double upper hybrid frequency by the nonlinear plasma mechanism, since the source emission has a low degree of polarization. In addition to dispersion effects, a Fourier analysis also reveals effects associated with the source inhomogeneity. We detected a frequency drift of pulsations (autodelays) with different signs for different polarization components. This drift suggests that, apart from the dispersion effects, there are also the effects related to inhomogeneity of the radio source. It is shown, in particular, that the upper hybrid modes (generating the radio emission) are unstable in regions with enhanced gradients of the plasma density and/or magnetic field.  相似文献   

6.
In this paper, the results of our observations on Al-method ionospheric absorption of radio waves on 1.8 and 2.2 MHz during the solar eclipse of 16 February 1980 are presented. The absorption decreased by about 41% and 46% of the normal value respectively at the above two frequencies at Ahmedabad following the maximum phase of the eclipse (about 77% of full disc) with a delay of 18 minutes. The quantityA T (f) which is a measure of εN vdh is now examined for better clarity of the influence of the changes in theE-layer. The results are discussed in relation to the observations of the ionizing radiations from the sun, changes in the electron density, recombination rate and absorption in the underlyingD andE regions.  相似文献   

7.
Recent observations indicate that relatively strong plasma ejections are accompanied by the formation of systems of coronal loops with two glowing ribbons near their footpoints. However, while two-ribbon flares can sometimes last for many hours, for example, soft X rays, they sometimes decay within tens of minutes. We study here factors affecting the durations of flares using four major flares occurring in July 15–18, 2002, as examples. Various ground-based and satellite observations are used to show that short-duration events involved collimated (narrow) plasma ejections directed to the north and the subsequent formation of compact loops in the leading part of the active region. During one event, a powerful eastward ejection in a wide solid angle was followed by the formation of an extended arch system in the trailing part, which determined the long duration of the flare. It is proposed that in events involving collimated jets and corresponding narrow features in coronal mass ejections (CMEs), systems of coronal loops do form, but post-eruptive energy release either does not occur or is expressed very faintly. So the energy does not go downward from this region, and the plasma is emitted free in the coronal loops. In contrast to such rapid flares, wide ejections and bright, large-scale CMEs are accompanied by the formation and prolonged existence of an extended arch system. Thus, powerful nonstationary solar processes involve a large-scale CME and the flare itself, with the pattern of a particular event determined by the reconnection scenario and the evolution of the ejected plasma.  相似文献   

8.
Spectra of solar-flare active regions displaying peculiarities in their polarized radio emission observed on the RATAN-600 radio telescope at 2–16 GHz are considered. An appreciable dip of the circularly polarized emission (Stokes parameter V) in the middle of the microwave range (6–12 GHz), sometimes with a reversal of the sign of the polarization, is unusual. In some cases, the ordinary emission also dominates at long microwave wavelengths. Expected peculiarities of the frequency structure of microwave sources are calculated in simple models with loops in the form of hot and cool tori. Numerical calculations of these spectra show that the above features of the polarized emission can be explained by the presence of a hot region in the solar corona. It is shown that the parameters of the spectrum of the polarized emission can be used to determine the magnetic field in this hot region and the product of the relative magnetic-field gradient and the loop thickness.  相似文献   

9.
Large-scale solar magnetic fields in the latitude range 50° S–50° N are analyzed in detail for a long time interval (1915–1990). We are primarily concerned with the two types of large-scale fields forming the two-and four-sector patterns on the Sun. The rotation parameters of these structures are obtained for all latitudes considered. The contribution of the two-sector structure grows and that of the four-sector structure decreases toward high latitudes. The magnetic field is activated simultaneously over a wide latitude range. Since both magnetic-field systems exhibit quasi-rigid rotation, their current systems must either be concentrated in a narrow latitude range or be situated beneath the convection zone, where rotation is only weakly differential. A period of about three years is manifest in the difference between the rotation periods for the two types of magnetic field. Physically, this may imply that these oscillations are external with respect to any level, and there is some phase delay due to their propagation from one level to another. We can conclude with a fair degree of certainty that as the activity level rises, the rotation speed decreases, and vice versa.  相似文献   

10.
Solar events of June 15/16, 2000, June 1/2, 2002, February 6, 2002, and February 7, 2002, have been studied. These events probably belong to a poorly studied class of explosive eruptions. In such events disintegration of the magnetic structure of an eruptive filament and dispersing of its fragments as a cloud over a considerable part of the solar surface are possible. The analysis of SOHO/EIT extreme ultraviolet images obtained in the 195 Å and 304 Å channels has revealed the appearance of dimmings of various shapes and propagation of a coronal wave for June 1/2, 2002. In all the events the Nobeyama, Learmonth, and Ussuriysk observatories recorded negative radio bursts at several frequencies in the 1–10 GHz range. Most likely, these bursts were due to absorption of solar radio emission in clouds produced by fragments of filaments. Absorption of the solar background radiation can be observed as a depression of the emission in the 304 Å channel. A model has been developed, which permits one to estimate parameters of absorbing plasma such as temperature, optical thickness, area of the absorbing cloud, and its height above the chromosphere from the radio absorption observed at several frequencies. The obtained values of the temperature, 8000–9000 K, demonstrate that the absorber was the material of an erupted cool filament. The model estimate of the masses of the ejecta in the considered events were ~1015 g, which is comparable to masses of typical filaments and coronal mass ejections.  相似文献   

11.
Many-year measurements of the radio flux of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A were continued at 290 and 151.5 MHz. The new data are used together with previously published observations carried out at decameter, meter, centimeter, and millimeter wavelengths to derive the frequency dependence of the secular variation of the radio flux density of Cas A: $d_\nu [\% year^{ - 1} ] = - (0.63 \pm 0.02) + (0.04 \pm 0.01)\ln \nu [GHz] + (1.51 \pm 0.16) \times 10^{ - 5} (\nu [GHz])^{ - 2.1} $ . The observed slowing of the secular variations with decreasing frequency at decameter wavelengths can be explained by a decrease in the optical depth of a remnant HII zone around Cas A with time due to recombination of hydrogen atoms. The new derived frequency dependence for the rate of the secular decrease, absolute and relative measurements of the radio flux density of Cas A carried out over the last 25 years, and the absolute spectrum of Cyg A are used to construct the spectrum of Cas A in the range 5–250 000 MHz predicted for epoch 2015.5.  相似文献   

12.
Igor Beresnev 《Natural Hazards》2013,66(2):1287-1291
The corner frequency of the spectrum of particle acceleration in a seismic wave radiated by an earthquake source marks the transition between the low-frequency band, in which the spectrum rises as frequency squared, and the high-frequency band, in which the spectrum is flat. These two distinct bands are controlled by different characteristics of faulting. The low-frequency range is governed by the value of slip alone, while the high-frequency range is controlled by both the total slip and slip velocity. This distinction explains why inversions of geodetic and shorter-period seismic data sense different characteristics of source process and are not generally comparable. Neglect of the sensitivity of seismic data to both slip and its rate may lead to false images of the inverted slip on the fault, as these characteristics trade off with each other. A recent example of the 2011 M w 9.0 Tohoku-oki, Japan, earthquake demonstrates that the observed “frequency-dependent” variations in the rupture process over the fault plane should not be considered unique to this particular event but rather a natural consequence of the frequency-dependent inversion.  相似文献   

13.
Radio-sounding experiments using signals from the Japanese NOZOMI spacecraft to probe the circum solar plasma were performed from December 2000 through January 2001. They can be used to obtain information about the properties of the solar wind plasma in the region where it is accelerated at heliocentric distances of 12.8–36.9R s (where R s is the radius of the Sun). Measurements of the intensity and frequency of the received signals were carried out with high time resolution (~0.05 s for the frequency and ~0.0064 s for the intensity), making it possible to investigate the anisotropy of inhomogeneities and the spatial spectrum of the turbulence of the circum solar plasma. Analysis of these radio-sounding data has shown that the scintillation index and intensity of the frequency fluctuations decrease approximately according to a power law with increasing distance of the line of sight from the Sun. Measurements of the amplitude fluctuations and estimates of the solar wind velocity derived from spatially separated observations indicate the presence of small-scale inhomogeneities with sizes of the order of 50 km at heliocentric distances less than 25R s , which are elongated in the radial direction with anisotropy coefficients from 2.3 to 3.0. The inhomogeneities at heliocentric distances exceeding 30R s become close to isotropic.  相似文献   

14.
地磁场测量在基础地质研究、矿产资源勘查和军事探测等领域得到广泛应用,作为磁场测量核心之一的氦光泵磁力仪探头,其射频场调频精度是决定其磁测精度的重要影响因素。为实现易调节、高精度、高可靠性的调频信号,本文利用直接数字频率合成器(DDS)与微控制器(MCU)相结合方式,研究了磁力仪探头射频场智能精密调频技术,可灵活、实时、自动、精密地对磁力仪探头射频场进行调频。调频信号加载到氦光泵磁力仪系统的联调试验表明,磁力仪获得了稳定精密的磁共振信号,从而保证了磁力仪实现高精度的磁场测量。  相似文献   

15.
16.
In this paper, the results of a series of extensive measurements of multifrequency radio wave absorption in theD-region of the ionosphere during the epoch of the minium period of the solar cycle are presented. Experimental results for Udaipur, a low latitude station (24°35′N) are compared with the theoretically expected results. It is found that the experimental values of frequency indexm and cos χ indexn agree well with those obtained theoretically. The mean values ofm andn for the whole period of observation are found to be 1·76 and 1·4 respectively. The seasonal variation of the values ofm andn is also discussed.  相似文献   

17.
The radio brightness distribution at 5.2 cm has been obtained along the entire solar limb down to a level of 0.01 of brightness temperature at the disk center T 0 c during the solar minimum. The measurements are based on strip scans from the Siberian Solar Radio Telescope. Data reduction included model fitting of an actual solar scan for each position angle. The maximum limb brightness, 1.37 T 0 c , in the derived distribution is at equatorial direction, where the radio radius exceeds the photosphere radius by 7%. Toward the poles, the brightness peak and radio radius gradually decrease to 1.01 T 0 c and 1.005 R0. The derived two-dimensional brightness distribution was used to calculate radio radius as a function of position angle for several wavelengths from 4 to 31.6 cm. These dependences are consistent with RATAN-600 observations at position angles 0° and 25°.  相似文献   

18.
A simple shallow-ice flowline glacier model coupled to a model of sediment transport and deposition is used to simulate formation and preservation of moraines. The number, positions, and volume of moraines formed all are sensitive to the climate history assumed. We drive the model with the GISP2 central-Greenland temperature record, and with reduced-millennial-amplitude versions of that record, to test the hypothesis that the Younger Dryas and other millennial oscillations were primarily wintertime events and thus had less influence on glacier behavior than did the Last Glacial Maximum with its strong summertime as well as wintertime signal. We find that forcing the model by GISP2, with dampened strength of the millennial-scale signal, provides modeled moraine configurations that reflect observed moraine records in the Northern Hemisphere.  相似文献   

19.
A comparative analysis of sunspot oscillations and related radio sources in the active regions AR 8949, AR 8951, and AR 8953 is carried out using SOHO MDI data and simultaneous observations with the Nobeyama Radioheliograph, with a one-minute time resolution on scales of tens to hundreds of minutes. The radio sources in the selected active regions are ~40 000–60 000 km away from the corresponding spots, with the periods of long-term oscillations of the radio sources being ~12% longer.  相似文献   

20.
Observations of the active region AR 7962 obtained at 2–32 cm on the RATAN-600 radio telescope on May 10–12, 1996, are presented. The high-resolution measurements detected a narrow feature near 8.5 cm against the background of the smooth spectrum of the local source associated with sunspots. This narrow-band emission is identified with a bright, pointlike, high-frequency source at 1.7 cm recorded on maps made using the Nobeyama radio telescope. The characteristics of the observed line (lifetime 3 days, brightness temperature of the order of several million Kelvin, relative width of about 10%) suggest that it can be explained as thermal cyclotron radiation at the third harmonic of the electron gyrofrequency from a compact source containing a dense, hot plasma; the corresponding higher frequency emission could be due to thermal Bremsstrahlung. Analysis of the RATAN-600 and Nobeyama data can be used to probe the magnetic field, kinetic temperature, and electron density in the radiation source in the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号