首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


2.
In the area of the Central Europe three large continental scale tectonic units meet together, namely Precambrian East European Craton (EEC) to the northeast, Variscan West European Platform (WEP) terranes to the southwest, and younger Alpine Carpathian arc in the south. The reference structure of the Central Europe is a sharp edge of the East European Craton. In the area of Poland the south-western margin of the EEC is marked as Teisseyre–Tornquist Zone (TTZ), which continues to the north as Sorgenfrei–Tornquist Zone (STZ). Teisseyre–Tornquist Zone (TTZ) — earlier Teisseyre Line, Tornquist Line or Teisseyre–Tornquist Line (TTL), is a term created in commemoration of Polish geologist Wawrzyniec Teisseyre and German geologist and paleontologist Alexander Tornquist. At the turn of XIX and XX century, they noticed a fundamental difference in the geology of platform cover between the rigid East European Platform and its more mobile southwestern forefield (Teisseyre, 1893, 1903; Tornquist, 1908, 1910). From the very beginning the TTL was conceived as a linear feature (fault or fault zone) marking the southwestern boundary of the EEC. Contrarily, the Trans–European Suture Zone (TESZ) is a term coined by Asger Berthelsen for an assemblage of suspect terranes boarded by the East European Craton and the Variscan orogeny. It is not a linear structure, but a terrane accretion zone, 100–200 km wide. Both terms, TTL and TESZ, should not be mistaken, as is the case on many maps concerning the problem (Dadlez et al., 2005). The edge of the craton is a major lithospheric structure, which appears to be a deep-seated boundary reaching at least down to a depth of about 200 km as shown by tomographic analysis of shear wave velocity structure of the mantle under Europe. Another indication of the deep-seated nature of this zone was obtained from observations of earthquakes and explosions located in Europe. To explain the observed blockage of energy from regional seismic events by TTZ, the structural anomaly between eastern and western Europe must reach at least down to a depth of about 200 km. Continental scale tectonic units of the Central Europe are clearly visible in the crustal structure, Moho depth map, and also gravity, magnetic and heat flow maps.  相似文献   

3.
This paper reports the results of 3-D tomographic modelling of crustal structure in the Trans European Suture Zone region (TESZ) of Poland, eastern Germany and Lithuania. The data are the product of a large-scale seismic experiment POLONAISE'97, which was carried out in 1997. This experiment was designed to provide some 3-D coverage. The TESZ forms the boundary between the Precambrian crustal terranes of the East European Craton (EEC) and the younger Phanerozoic terranes to the southwest. The 3-D results generally confirm the earth models derived by earlier 2-D analyses, but also add some important details as well as a 3-D perspective on the structure. The velocity model obtained shows substantial horizontal variations of crustal structure across the study area. Seismic modelling shows low (<6.1 km/s) velocities suggesting the presence of sedimentary rocks down to a depth of about 20 km in the Polish basin. The shape of the basin in the vicinity of the profile P4 shows significant asymmetry. Three-dimensional modelling also allowed tracing of horizontal irregularities of the basin shape as well as variations of the Moho depth not only along profiles, but also between them. The slice between P2 and P4 profiles shows about 10-km variations of the Moho over a 100-km interval. The crustal thickness varies from about 30 km in SW, beneath the Palaeozoic platform, to about 42 km beneath East European Craton in NE. High seismic velocities of about 6.6 km/s were found in the depth range 2–10 km, which coincides with K trzyn anorthosite massif. The results of this 3-D seismic modelling of the POLONAISE'97 data will ultimately be supplemented by inversion of seismic data from previous experiments.  相似文献   

4.
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle.  相似文献   

5.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

6.
The large-scale seismic refraction and wide-angle reflection experiment POLONAISE'97 together with LT-7 and TTZ profiles carried out with the most modern techniques gave a high resolution of crustal structure of the Trans-European Suture Zone (TESZ) in NW and central Poland. The results of seismic investigations show the presence of relatively low velocity rocks (Vp < 6.1 km/s) down to a depth of 20 km beneath the Polish Basin (PB), and a high velocity lower crust (Vp = 6.8–7.3 km/s). The crustal thickness in the TESZ is intermediate between that of the East European Craton (EEC) to the northeast (40–45 km) and that of the Variscan crust (VB) to the southwest ( 30 km). Velocities in the uppermost mantle are relatively high (Vp = 8.25–8.45 km/s). The crust is three-layered with substantial differences in the velocities and thickness of individual layers. The area of the TESZ in NW and central Poland can be divided into at least two crustal blocks (terranes), called here Pomeranian Unit (PU, in the northwest) and Kuiavian Unit (KU, in the southeast). The postulated boundary between KU and PU is rather sharp at particular levels of the crust. Velocity distribution in the middle and lower crystalline crust in the TESZ area resemble values recognized in the EEC area, the fundamental difference being the much smaller thickness of both these layers. Our hypothesis/speculation is that the attenuated lower and middle crust of the TESZ belong to proximal terranes built of the EEC crust detached in the southeast and re-accreted to the EEC due to the process of anti-clockwise rotation of the Baltica paleocontinent during the Ordovician–Early Silurian.  相似文献   

7.
This paper presents relative secular variations of the total intensity of the geomagnetic field against a background of results of magnetic anomaly interpretation along seismic profile P4. Profile P4 crosses a Variscan folding zone in the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ), and the Polish part of the East European Craton (EEC). Secular geomagnetic field variations measured in 1966–2000 along a line adjacent to seismic profile P4 were analysed. The study of secular variations, reduced to the base recordings at the Belsk Magnetic Observatory, showed that the growth of geomagnetic field at the East European Craton was slower than in the Trans-European Suture Zone and the Paleozoic Platform.A 2D crustal magnetic model was interpreted as a result of magnetic modelling, in which seismic, geological and geothermal data were also used. The modelling showed that there were significant differences in the magnetic model for geotectonic units, which had been earlier determined based on deep seismic survey data. It should be noted that a fundamental change of trend of the relative secular variations was observed at the slope of the Precambrian Platform. After analysing the geomagnetic field observed along profile P4, the hypothesis that the contact between Phanerozoic and Precambrian Europe lies in Poland's territory can be proven.  相似文献   

8.
One of the major tectonic problems in Europe concerns the southwest margin of the East European Platform in the region of the so-called Polish-Danish trough. In general, this margin is assumed to be the Tornquist-Teisseyre (T-T) Line, running approximately from northwest to southeast in this part of Europe. Determination of deep crustal structure of the contact zone between the Precambrian Platform and the Palaeozoic Platform was the main aim of the deep seismic sounding (DSS) programme in Poland in 1965–1982.Deep seismic soundings of the Earth's crust have been made in the T-T Line zone along nine profiles with a total length of about 2600 km. The results of deep seismic soundings have shown that the crust in the marginal zone of the East European Platform has highly anomalous properties. The width of this zone ranges from 50 km in northwest Poland to about 90 km in southeast Poland. The crustal thickness of the Palaeozoic Platform in Poland is 30–35 km, and of the Precambrian Platform 42–47 km, while in the T-T tectonic zone it varies from 50 to 55 km. Above the Moho boundary, in the T-T zone, at a depth of 40–45 km, there is a seismic discontinuity with P-wave velocities of 7.5–7.7 km/s. Boundary velocities, mean velocities and stratification of the Earth's crust vary distinctly along the T-T zone. There are also observed high gravimetric and magnetic anomalies in the T-T zone. The T-T tectonic zone determined in this manner is a deep tectonic trough with rift properties.The deep fractures delineating the T-T tectonic zone are of fundamental importance for the localization of the plate edge of the Precambrian Platform of eastern Europe. In the light of DSS results, the northeastern margin of the T-T tectonic zone is a former plate boundary of the East European Platform.  相似文献   

9.
Many granites have compositional features that directly reflect the composition of their source rocks. Since most granites come from the deeper parts of the Earth's crust, their study provides information about the nature of parts of that deep crust. Granites and related volcanic rocks are abundant and widely distributed in the Palaeozoic Lachlan Fold Belt of southeastern Australia. These granites show patterns of regional variation in which sharp discontinuities occur between provinces which internally are of a rather constant character. Such a discontinuity has long been recognized at the I‐S line and the extent of that line can now be defined more fully. Breaks of this type are thought to correspond to sharp changes in the composition of the deep crust that correspond to unexposed or basement terranes. Nine such basement terranes can be recognized in the Lachlan Fold Belt. The character of these basement terranes appears to be different from that of the terranes recognized in the Mesozoic‐Cainozoic Cordilleran fold belt, in which the plates accreted during the period of tectonism reflected in the exposed surface rocks. In the Lachlan Fold Belt, it is postulated that fragments of continental crust, or microplates, were assembled in the Late Proterozoic or Early Palaeozoic to form the substrate of the presently exposed Palaeozoic sedimentary rocks; the compositional features of these fragments were later redistributed vertically by magmatic processes. The identification of basement terranes of this type shows that models which involve the lateral growth of the Lachlan Fold Belt during the Palaeozoic, in a manner analogous to the accretion of younger belts, are untenable. These basement terranes have implications for mineral exploration because the content of heavy metals can vary from one to another and this would ultimately affect the probability of concentrating these metals to form a mineral deposit.  相似文献   

10.
The geometry and evolution of pre-existing basement in accretionary belts bordering supercontinents are often unclear. Integrative interpretation of long-wavelength potential field satellite data can image deep crust structure, improving our understanding of lithospheric processes that formed these margins bottom-up. Here, we present a multidisciplinary interpretation of the lithospheric architecture of the central southern Amazon Craton, a fragment of an accretionary belt at the southwestern Columbia supercontinent margin. Satellite-borne gravity and magnetic data, airborne magnetic data, passive seismic (Vp/Vs ratio, crustal thickness) and seismic tomography data reveals that basement terranes from the interior of the craton extend into the accretionary margin of Columbia. We demonstrate a vertically heterogeneous structure with an underlying strongly reworked pre-Columbia tectonic wedge that sustained prolonged modification during the supercontinent assembly as corroborated by Nd isotope and geochronology data. Nd isotope data suggest that the protracted orogenic wedge was influenced by subduction angle shifts over time, including addition of substantial juvenile material during slab retreat events. This interplay promoted Craton growth at the supercontinent margin while keeping a subtle record of the pre-existing framework. Our findings point to the possible misrepresentation of basement extension and geometry of supercontinent margins elsewhere.  相似文献   

11.
M. V. Mints 《Geotectonics》2011,45(4):267-290
The integral 3D model of the deep structure of the Early Precambrian crust in the East European Craton is based on interpretation of the 1-EU, 4B, and TATSEIS seismic CDP profiles in Russia and the adjacent territory of Finland (FIRE project). The geological interpretation of seismic images of the crust is carried out in combination with consideration of geological and geophysical data on the structure of the Fennoscandian Shield and the basement of the East European platform. The model displays tectonically delaminated crust with a predominance of low-angle boundaries between the main tectonic units and the complex structure of the crust-mantle interface, allowing correlation of the deep structure of the Archean Kola, Karelian, and Kursk granite-greenstone terrane with the Volgo-Uralia granulite-gneiss terrane, as well as the Paleoproterozoic intracontinental collision orogens (the Lapland-Mid-Russia-South Baltia orogen and the East Voronezh and Ryazan-Saratov orogens) with the Svecofennian accretionary orogen. The lower crustal “layer” at the base of the Paleoproterozoic orogens and Archean cratons was formed in the Early Paleoproterozoic as a result of underplating and intraplating by mantle-plume mafic magmas and granulite-facies metamorphism. The increase in the thickness of this “layer” was related to hummocking of the lower crustal sheets along with reverse and thrust faulting in the upper crust. The middle crust was distinguished by lower rigidity and affected by ductile deformation. The crust of the Svecofennian Orogen is composed of tectonic sheets plunging to the northeast and consisting of island-arc, backarc, and other types of rocks. These sheets are traced in seismic sections to the crust-mantle interface.  相似文献   

12.
Geophysical Evidence for Terrane Boundaries in South-Central Argentina   总被引:1,自引:0,他引:1  
The geological interpretation of high-resolution aeromagnetic data over the La Pampa province, in central Argentina, in addition to lower resolution magnetic information from the region of the Neuquén and Colorado basins, leads to the definition of the precise boundaries of the Chilenia, Cuyania, Pampia and Patagonia terranes, as well as that of the Río de la Plata Craton, within the study region. The high-resolution aeromagnetic survey data are compared and studied in conjunction with all the available geological information, to produce a map of the solid geology of this region, which is largely covered by Quaternary sediments. A number of structures of different magnitudes, as well as their relative chronology, are also recognized, i.e., regional faults, sub-regional faults, fractures and shear zones, as well as the most conspicuous magnetic fabric of the basement that reflects its main planar structures. Three different basements are distinguished on the basis of their contrasting magnetic character, and are interpreted to represent the Cuyania and Pampia terranes and the Río de la Plata Craton, separated from each other by large-scale discontinuities. In the western part of the study region an additional major discontinuity separates the Chilenia and Cuyania terranes. In the southernmost area studied, WNW-trending structures are predominant, particularly a major NNE-vergent thrust that indicates the truncation of the Cuyania-Pampia suture and is regarded to be related to the possible collision of the Patagonia terrane. An E–W – trending magnetic and gravity anomaly traversing the full extra-Andean Argentine territory, located immediately to the south of 39°S, represents a major structure. The activation of this structure during the Mesozoic gave rise to the Huincul Ridge and marks the interruption of the distinct N-S structures of the Chilenia, Cuyania and Pampia terranes, as well as those of the Río de la Plata Craton, to the north. This E–W represents the suture zone of the Patagonia terrane.  相似文献   

13.
The present study was undertaken with the objective of deriving constraints from available geological and geophysical data for understanding the tectonic setting and processes controlling the evolution of the southern margin of the East European Craton (EEC). The study area includes the inverted southernmost part of the intracratonic Dnieper-Donets Basin (DDB)–Donbas Foldbelt (DF), its southeastern prolongation along the margin of the EEC–the sedimentary succession of the Karpinsky Swell (KS), the southwestern part of the Peri-Caspian Basin (PCB), and the Scythian Plate (SP). These structures are adjacent to a zone, along which the crust was reworked and/or accreted to the EEC since the late Palaeozoic. In the Bouguer gravity field, the southern margin of the EEC is marked by an arc of gravity highs, correlating with uplifted Palaeozoic rocks covered by thin Mesozoic and younger sediments. A three-dimensional (3D) gravity analysis has been carried out to investigate further the crustal structure of this area. The sedimentary succession has been modelled as two heterogeneous layers—Mesozoic–Cenozoic and Palaeozoic—in the analysis. The base of the sedimentary succession (top of the crystalline Precambrian basement) lies at a depth up to 22 km in the PCB and DF–KS areas. The residual gravity field, obtained by subtracting the gravitational effect of the sedimentary succession from the observed gravity field, reveals a distinct elongate zone of positive anomalies along the axis of the DF–KS with amplitudes of 100–140 mGal and an anomaly of 180 mGal in the PCB. These anomalies are interpreted to reflect a heterogeneous lithosphere structure below the supracrustal, sedimentary layers: i.e., Moho topography and/or the existence of high-density material in the crystalline crust and uppermost mantle. Previously published data support the existence of a high-density body in the crystalline crust along the DDB axis, including the DF, caused by an intrusion of mafic and ultramafic rocks during Late Palaeozoic rifting. A reinterpretation of existing Deep Seismic Sounding (DSS) data on a profile crossing the central KS suggests that the nature of a high-velocity/density layer in the lower crust (crust–mantle transition zone) is not the same as that of below the DF. Rather than being a prolongation of the DDB–DF intracratonic rift zone, the present analysis suggests that the KS comprises, at least in part, an accretionary zone between the EEC and the SP formed after the Palaeozoic.  相似文献   

14.
New deep seismic reflection data provide images of the crust and uppermost mantle underlying the eastern Middle Urals and adjacent West Siberian Basin. Distinct truncations of reflections delineate the late-orogenic strike-slip Sisert Fault extending vertically to ∼28 km depth, and two gently E-dipping reflection zones, traceable to 15–18 km depth, probably represent normal faults associated with the opening of the West Siberian Basin. A possible remnant Palaeozoic subduction zone in the lower crust under the West Siberian Basin is visible as a gently SW-dipping zone of pronounced reflectivity truncated by the Moho. Continuity of shallow to intermediate-depth reflections suggest that Palaeozoic accreted island-arc terranes and overlying molasse sequences exposed in the hinterland of the Urals form the basement for Triassic and younger deposits in the West Siberian Basin. A highly reflective lower crust overlies a transparent mantle at about 43 km depth along the entire 100 km long seismic reflection section, suggesting that the lower crust and Moho below the eastern Middle Urals and West Siberian Basin have the same origin.  相似文献   

15.
Magnetic anomaly maps of the Trans-European Suture Zone (TESZ) highlight the contrast between the highly magnetic crust of Baltica and the less magnetic terranes to the SW of the suture. Although the TESZ is imaged on gravity maps, anomalies related to postcollisional rifting and reactivated rift structures tend to dominate.

Seismic and potential field data have been used to construct 2 -D crustal models along three profiles crossing the Baltica–Avalonia suture in the southern North Sea (SNS). The first of these models lies along a transect assembled from reflection line GECO SNST 83-07 and refraction profile EUGENO-S 2; the other two models are coincident with MONA LISA profiles 1 and 2. Additional structural information and density information for the cover sequence is available from released wells, while magnetic susceptibility values are compatible with values measured from borehole core samples.

Magnetic anomalies related to the suture are interpreted as due to magnetic Baltican basement of the Ringkøbing-Fyn High dipping SW beneath nonmagnetic Avalonian basement underlying the western part of the SNS. Low-amplitude, long-wavelength magnetic anomalies occurring outboard of the suture are interpreted as due to a mid-crustal magnetic body, possibly a buried magmatic complex. This might represent the ‘missing’ arc related to inferred southward subduction of the Tornquist Sea, or an exotic element emplaced during the collision between Avalonia and Baltica. The present model supports an imbricated structure within Baltica as indicated by the latest reprocessing of the MONA LISA seismic data.  相似文献   


16.
Early Palaeozoic bimodal rift-related magmatism is widespread throughout much of the Variscides of Europe. It is traceable from the Polish Sudetes to NW Iberia. Granitic plutonism generally predates Cambro–Ordovician bimodal magmatism. In the N Bohemian Massif this early Palaeozoic granitic plutonism was generated by partial melting of Cadomian basement, whereas contemporaneous alkali granites with a mantle component are typical of the NW Iberian Massif. Silurian-Devonian mafic magmatism in the N Bohemian Massif, Massif Central and NW Iberian Massif is partly preserved as obducted ophiolites. Compositional diversity displayed by Cambro-Ordovician mafic magmatism can be accounted for by interaction between a spreading centre and an upwelling mantle plume. This indicates that combined tensional forces and mantle plume convection assisted the early Palaeozoic dispersal of terranes from the N Gondwana margin. Continued fragmentation resulted in development of an archipelago of related terranes separated by a network of seaways and formation of oceanic crust.  相似文献   

17.
The extension of eastern Avalonia from Britain through the NE German Basin into Poland is, in some sense, a virtual structure. It is covered almost everywhere by late Paleozoic and younger sediments. Evidence for this terrane is only gathered from geophysical data and age information derived from magmatic rocks. During the last two decades, much geophysical and geological information has been gathered since the European Geotraverse (EGT), which was followed by the BABEL, LT-7, MONA LISA, DEKORP-Basin'96, and POLONAISE'97 deep seismic experiments. Based on seismic lines, a remarkable feature has been observed between the North Sea and Poland: north of the Elbe Line (EL), the lower crust is characterised by high velocities (6.8–7.0 km/s), a feature which seems to be characteristic for at least a major part of eastern Avalonia (far eastern Avalonia). In addition, the seismic lines indicate that a wedge of the East European Craton (EEC) (or Baltica) continues to the south below the southern Permian Basin (SPB)—a structure which resembles a passive continental margin. The observed pattern may either indicate an extension of the Baltic crust much farther south than earlier expected or oceanic crust of the Tornquist Sea trapped during the Caledonian collision. In either case, the data require a reinterpretation of the docking mechanism of eastern Avalonia, and the Elbe–Odra Line (EOL), as well as the Elbe Fault system, together with the Intra-Sudedic Faults, appear to be related to major changes in the deeper crustal structures separating the East European crust from the Paleozoic agglomeration of Middle European terranes.  相似文献   

18.
The luminescence of plagioclase was studied for various types of sialic rocks from crystalline shields of the East European Craton and median masses in fold regions of central and western Europe. The variation of luminescence (contributions of various luminogens) bears information on the specific features of the tectonomagmatic and geochemical evolution of particular tectonic units and the geological history of the continental crust of Europe as a whole.  相似文献   

19.
V. A. Bush 《Geotectonics》2011,45(6):469-480
New data on the deep structure of the crystalline basement in the conjugate zone between the northern termination of the Baikal-Patom Foldbelt and the Siberian Craton are discussed. Digital processing of the data of a high-precision airborne geophysical (magnetic, gravity, radiometric) surveys on a scale of 1: 50000 allows us to construct 3D models of the petrophysical properties of the rocks and to ascertain the main features of the deep structure of the pre-Riphean crystalline basement overlapped by a thick sedimentary cover. The Archean and Paleoproterozoic metamorphic and plutonic petrophysical complexes are identified, and their vertical and horizontal relationships are outlined. Horizontal tectonic movements and overthrusting for many tens of kilometers are interpreted in the internal structure of the crystalline basement. The tectonic overriding of the marginal part of the Siberian Craton by nappes of the Baikal-Patom Foldbelt is proved. In particular, the completely detached, allochthonous position of the Kotuikan Zone along which the Magan and Daldyn terranes cojugate with the Aldan Province in the south of the craton is established. This compels us to consider a re-evaluation of the currently accepted concept concerning the structure and formation history of the basement of the ancient Siberian Craton.  相似文献   

20.
In the Middle Urals, volcanic-arc and back-arc basin rocks of Ordovician to Devonian age occur in the Tagil Synform. These outboard terranes were thrust westwards in the late Carboniferous onto continental margin associations of late Proterozoic and Palaeozoic age, now exposed in the Central Uralian Uplift. The Main Uralian Fault coincides approximately with the suture separating the outboard terranes from the East European Platform margin. New fieldwork in the hinterland of the Middle Urals in the area east of the Tagil Synform has found structural evidence favouring E-directed thrusting of accreted terranes and eugeoclinal allochthons in the late Palaeozoic. The upper tectonic units are composed of ophiolite mélange and volcano-sedimentary rocks of Ordovician to Devonian age; they are thrust onto high-grade gneisses, some of possible microcontinental affinities, extensively intruded by mid-Palaeozoic granitic plutons. The nappes in the hinterland are refolded by major upright antiforms and synforms that fold the entire tectonostratigraphy. After thrust assembly, all tectonic units east of the Main Uralian Fault were intruded by late Carboniferous to early Permian granites. Reflection seismic profiles (recorded to 8 s TWT), recently reprocessed at Cornell University, image the major fold structures and demonstrate that they are restricted to the upper crust, being underlain by an extensive zone of flat-lying middle crustal reflectivity. At 10–15 km depth the latter appears to truncate all structures, including the late- to post-tectonic granitoids and extensional faults, east of the Main Uralian Fault. Previous studies (potential-field, refraction- and wide-angle-reflection seismics) have identified an anomalously deep crust under the Tagil Synform and have concluded that the root zone of the orogen is located beneath this belt. The new evidence presented here supports this interpretation, with back-thrusting of the oceanic rocks eastwards over Palaeozoic accreted terranes. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号