首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

2.
3.
TPost-orogenic intrusive complexes from the Sulu belt of eastern China consist of pyroxene monzonites and dioritic porphyrites. We report new U–Pb zircon ages, geochemical data, and Sr–Nd–Pb isotopic data for these rocks. Laser ablation-inductively coupled plasma-mass spectrometry U–Pb zircon analyses yielded a weighted mean 206Pb/238U age of 127.4 ± 1.2 Ma for dioritic porphyrites, consistent with crystallization ages (126 Ma) of the associated pyroxene monzonites. The intrusive complexes are characterized by enrichment in light rare earth elements and large ion lithophile elements (i.e. Rb, Ba, Pb, and Th) and depletion in heavy rare earth elements and high field strength elements (i.e. Nb, Ta, P, and Ti), high (87Sr/86Sr)i ranging from 0.7083 to 0.7093, low ?Nd(t) values from ?14.6 to ? 19.2, 206Pb/204Pb = 16.65–17.18, 207Pb/204Pb = 15.33–15.54, and 208Pb/204Pb = 36.83–38.29. Results suggest that these intermediate plutons were derived from different sources. The primary magma-derived pyroxene monzonites resulted from partial melting of enriched mantle hybridized by melts of foundered lower crustal eclogitic materials before magma generation. In contrast, the parental magma of the dioritic porphyrites was derived from partial melting of mafic lower crust beneath the Wulian region induced by the underplating of basaltic magmas. The intrusive complexes may have been generated by subsequent fractionation of clinopyroxene, potassium feldspar, plagioclase, biotite, hornblende, ilmenite, and rutile. Neither was affected by crustal contamination. Combined with previous studies, these findings provide evidence that a Neoproterozoic batholith lies beneath the Wulian region.  相似文献   

4.
The southern segment of the Eastern Ghats Mobile Belt (EGMB) in India was an active convergent margin during Mesoproterozoic, prior to the final collision in Neoproterozoic during the assembly of the Rodinia supercontinent. Here we present mineralogical, whole-rock geochemical, zircon U–Pb and Hf isotopic data from a granitoid suite in the Bopudi region in the EGGB. The granitoid complex comprises quartz monzodiorite with small stocks of rapakivi granites. The monzodiorite, locally porphyritic, contains K-feldspar megacrysts, plagioclase, quartz, biotite and ortho-amphibole. The presence of mantled ovoid megacrysts of alkali feldspar embaying early-formed quartz, and the presence of two generations of the phenocrystic phases in the rapakivi granites indicate features typical of rapakivi granites. The K-feldspar phenocrysts in the rapakivi granite are mantled by medium-grained aggregates of microcline (Ab7 Or93), which is compositionally equivalent to the rim of Kfs phenocryst and Pl (An23–24 Ab75). The geochemistry of both the granitoids shows arc-like features for REE and trace elements. LA-ICP-MS zircon analyses reveal 207Pb/206Pb ages of 1582 (MSWD = 1.4) for the rapakivi granite 1605 ± 3 Ma (MSWD = 3.9) for the monzodiorite. The zircons from all the granitoid samples show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. The zircons from the monzodiorite have a limited variation in initial 176Hf/177Hf ratios of 0.28171–0.28188, with εHf(t) values of −2.2 to +2.8. Correspondingly, their two-stage Hf isotope model ages (TDM2) ranging from 2.15 to 2.47 Ga probably suggest a mixed source for the magma involving melting of the Paleoproterozoic basement and injection of subduction-related juvenile magmas. The prominent Mesoproterozoic ages of these granitoids suggest subduction-related arc magmatism in a convergent margin setting associated with the amalgamation of the Columbia-derived fragments within the Neoproterozoic Rodinia assembly.  相似文献   

5.
Lincang granite is a batholith located in the Sanjiang region and is an important research subject for understanding subduction and collision during the Paleo-Tethyan period. It is widely exposed in the Lincang Terrane and extends south into Burma. Based on various petrological and geochemical investigations performed from south to north across the Lincang granite, a new set of data, which includes zircon chronological and Hf isotopic data, is presented to discuss the origin of the Lincang granite and its tectonic significance. The Lincang granite is a peraluminous, high-K calc-alkaline body with sub-parallel REE patterns and a strong negative Eu anomaly. This anomaly is characteristic of a post-collision peraluminous S-type granitic batholith. The 200–230 Ma formation age of the Lincang granite was determined using LA-ICP-MS zircon U–Pb dating. Thus, it has been confirmed that the granite formed during the late Triassic period, and the formation process lasted for approximately 30 Ma. Geochemical and isotopic compositions indicate that the primary magma of Lincang granite most likely originated from a crustal source, and possibly underwent an assimilation–fractionation crystallization (AFC) process during its emplacement. The Lincang granite formed during the continental collision between the Baoshan–Gengma Terrane and the Lanping–Simao Terrane after the northeast subduction of the Paleo-Tethyan Oceanic Plate. Therefore, the late Triassic Lincang granite is important evidence for the closure of the Paleo-Tethyan Ocean.  相似文献   

6.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

7.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

8.
The Santa Catalina Mountains, SE Arizona, was one of the first metamorphic core complexes to be described. Despite its status as a type example, relatively little is known about precise ages and origins of the intrusive rocks that make up most of the crystalline core. U–Pb and Hf isotopic data by laser ablation–inductively coupled plasma–mass spectrometry from zircons and Nd isotopic results from whole rocks were obtained for 12 granitoids ranging from 1,440 to 26 Ma. Results confirm that the 1.44-Ga Oracle Granite extends through the Catalina Range as variably mylonitic granite and banded gneiss. Laramide intrusions (67–73 Ma) display initial εNd values ?5 to ?8 and εHf from ?7.5 to ?9. Magmatic ages for the prominent white granite sills of the Wilderness suite are 46–57 Ma, in agreement with Terrien (2012), and these granites have initial εNd values ?8 to ?10 and εHf from ?7 to ?14. Lastly, the undeformed Catalina Granite has an age of 26 Ma, with an initial εNd and εHf of ?6 and ?8, respectively. Our Nd results agree with limited results from Farmer and DePaolo (89:10141–10160, 1984). Although the Catalina Granite seems to have a significant juvenile component based on Nd and Hf, most of the Laramide and Wilderness intrusions contain Nd and Hf compositions lying close to the evolution of 1.44-Ga Oracle Granites, a fact that is confirmed by the U–Pb data, which show both 1.7- and 1.4-Ga zircon cores in these samples, with 1.4 Ga as the dominant core age. In order to become the dominant source of most of the 72–45-Ma magmas, the Oracle pluton must not only extend across the whole Catalina region, but also have abundant deep-seated equivalents to provide magma sources.  相似文献   

9.
The Ordovician Macquarie Arc in the eastern subprovince of the Lachlan Orogen, southeastern Australia, is an unusual arc that evolved in four vertically stacked volcanic phases over ~ 37 million years, and which is flanked by coeval, craton-derived, passive margin sedimentary terranes dominated by detrital quartz grains. Although these two terranes are marked by a general absence of provenance mixing, LA-ICPMS analysis of U–Pb and Lu–Hf contents in zircon grains in volcaniclastic rocks from 3 phases of the arc demonstrates the same age populations of detrital grains inherited from the Gondwana margin as those that characterise the flanking quartz-rich Ordovician turbidites. Magmatic Phase 1 is older, ~ 480 Ma, and is characterised by detrital zircons grains with ages of ~ 490–540 with negative εHf from 0 to mainly –7.78, 550–625 Ma ages with negative εHf from 0 to ?26.6 and 970–1250 Ma (Grenvillian) with εHf from + 6.47 to ?6.44. We have not as yet identified any magmatic zircons related to Phase 1 volcanism. Small amounts of detrital zircons also occur in Phase 2 (~ 468–455 Ma), hiatus 1 and Phase 4 (~ 449–443 Ma), all of which are dominated by Ordovician magmatic zircons with positive εHf values, indicating derivation from unevolved mantle-derived magmas, consistent with formation in an intraoceanic island arc. Because of the previously obtained positive whole rock εNd values from Phase 1 lavas, we rule out contamination from substrate or subducted sediments. Instead, we suggest that during Phase 1, the Macquarie Arc lay close enough to the Gondwana margin so that volcaniclastic rocks were heavily contaminated by detrital zircon grains shed from granites and Grenvillian mafic rocks mainly from Antarctica (Ross Orogen and East Antarctica) and/or the Delamerian margin of Australia. The reduced nature of a Gondwana population in Phase 2, hiatus 1 and Phase 4 is attributed to opening of a marginal basin between the Gondwana margin and the Macquarie Arc that put it out of reach of all but rare turbiditic currents.  相似文献   

10.
11.
Abstract

The origin of elevated geothermal gradients in the subsurface Thomson Orogen and the nature of the crustal basement beneath it, whether oceanic or continental, remain enigmatic. Previous studies have demonstrated that a higher crustal radiogenic input is required to explain these anomalous thermal gradients. In this study, we have investigated the nature and age of this crustal input by undertaking geochemical, geochronological and Hf and O isotope analyses of buried granitic rocks as well as evaluating the heat-producing potential of metasedimentary rocks. The mineralogy, composition and Neoproterozoic/Cambrian to Devonian age of the low to moderate heat-producing I- and S-type granitic rocks strongly contrast with the Carboniferous A-type high-heat-producing granites of the Big Lake Suite, which have been suggested to be an important contributor to the elevated geothermal gradients, near the southwest corner of the Thomson Orogen. These differences suggest the Big Lake Suite rocks do not extend into the Queensland part of the temperature anomaly. Heat production of the metasedimentary rocks is also low to moderate. Based on Hf isotope compositions of zircons characterised by mantle-like oxygen signature (?Hf(t) = –12 to +2), we propose the temperature anomaly results from the occurrence of Mesoproterozoic and/or Paleoproterozoic high-heat-producing rocks beneath the Thomson Orogen. Precambrian crust, therefore, lies well east of the Tasman line. The results do not support a Neoproterozoic to Cambrian oceanic crust, as previously suggested, but instead point to a continental substrate for the Thomson Orogen. Hf isotopes indicate an overall trend towards more isotopically juvenile compositions with a progressive reduction in the contribution of older crustal sources to granitic magmas towards the present time. Different Hf isotopic signatures for the Lachlan (?Hf(t) = –13 to +15), Thomson (?Hf(t) = –14 to +5) and Delamerian (?Hf(t) = –7 to +4) orogens highlight lateral variations in the age structures of crustal basement beneath these orogens.  相似文献   

12.
《International Geology Review》2012,54(13):1616-1625
We report new zircon U–Pb and pyrite Re–Os geochronological studies of the Yinjiagou poly-metallic deposit, sited along the southern margin of the North China Craton (SMNCC). In this deposit, pyrite, the most important economic mineral, is intergrown/associated with Mo, Cu, Au, Pb, Zn, and Ag. Prior to our new work, the age of chalcopyrite–pyrite mineralization was known only from its spatial relationship with molybdenite mineralization and with intrusions of known ages. The U–Pb and Re–Os isotope systems provide an excellent means of dating the mineralization itself and additionally place constraints on the ore genesis and metal source. Zircons separated from the quartz–chalcopyrite–pyrite veins include both detrital and magmatic groups. The magmatic zircons confine the maximum age of chalcopyrite–pyrite mineralization to 142.0 ± 1.5 Ma. The Re–Os results yield an age of 141.1 ± 1.1 Ma, which represents the age of the chalcopyrite–pyrite mineralization quite well. The common Os contents are notably low (0.5–20.1 ppt) in all samples. In contrast, the Re contents vary considerably (3.0–199.2 ppb), most likely depending on intensive boiling, which resulted in an increase of Re within the pyrite. This study demonstrates that the main chalcopyrite–pyrite mineralization occurred late in the magmatic history and was linked to a deeper intrusion involving dominant mantle-derived materials. This mineralization event might be related to the Early Cretaceous lithospheric destruction and thinning of the SMNCC.  相似文献   

13.
The Mesozoic Xigaze ophiolite is a key to understanding the tectonic evolution of the Yarlung Zangbo suture zone. Although many studies have been reported, the formation age and petrogenesis of the Xigaze ophiolite remain controversial. In this paper, new geochronological and geochemical data for mafic dikes (diabase, dolerite), lavas, and gabbros of the Xigaze ophiolite are provided to constrain the origin of the Xigaze ophiolite. Combined with previous studies, three new zircon U–Pb ages of samples from two gabbro and one dolerite samples show that the Xigaze ophiolite was produced at two distinct stages of 174–149 Ma and 137–123 Ma. Whole-rock geochemical data indicate that these rocks exhibit N-MORB-like features, but the gabbros are more depleted in trace elements and belong to cumulates. Geochemical characters, combined with their positive εNd(t) values (+3.2 to +9.6), suggest that these samples originated from depleted mantle sources with minor influence of slab-derived fluids. Considering the previous studies on the Yarlung Zangbo suture zone, the Xigaze ophiolite was likely generated in an active continental margin fore-arc basin with a multistage model associated with the northward subduction of the Yarlung Zangbo Neo-Tethys Ocean beneath the Lhasa terrane. The Middle–Late Jurassic ophiolitic massifs (174–149 Ma) were produced as the result of slab rollback and were followed by subsequent slab break-off at ~ 150 Ma. The fore-arc lithosphere may be frozen at ~150–137 Ma, consistent with the termination of the Gangdese arc magmatism during this period. The Early Cretaceous ophiolitic massifs (137–123 Ma) were developed in relation to the reinitiation of the Neo-Tethyan oceanic lithosphere subduction, the retreat of the subduction zone, and the creation of a fore-arc basin with strong hyperextension in a new cycle.  相似文献   

14.
Liu  Shen  Feng  Caixia  Fan  Yan  Chen  Xiaoqing  Yang  Yuhong  Zhao  Huibo  Coulson  Ian M. 《中国地球化学学报》2020,39(6):862-886
Acta Geochimica - This work reports an important episode of extensional, mafic magmatism that impacted the North China Craton (NCC) during the Permo-Triassic and influenced the evolution of this...  相似文献   

15.
Basaltic porphyries from the northeast North China craton (NCC) provide an excellent opportunity to examine the nature of their mantle source and the secular evolution of the underlying mantle lithosphere. In addition, the study helps to constrain the age and the mechanism of NCC lithospheric destruction. In this paper, we report geochronological, geochemical, and Sr–Nd isotopic analyses of a suite of mafic lavas. Detailed laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating yielded an age of 223.3 ± 1.1 million years, which we regard as representing the crystallization age of the basaltic porphyries. The bulk-rock analysed samples are enriched in both large ion lithophile elements (LILEs) (i.e. Ba, Sr, and Pb) and light rare earth elements (LREEs), but depleted in high field strong elements (HFSEs) (i.e. Nb, Ta, Zr, Hf, and Ti) and heavy rare earth elements (HREEs), without significant Eu anomalies (Eu/Eu*?= 089–0.98). The basaltic porphyries have undergone low degrees (~5%) of partial melting of a garnet-bearing lherzolite mantle. The rocks display very uniform (87Sr/86Sr) i (0.70557–0.70583) and negative ?Nd (t) values (–11.9 to –10.1). These features indicate that the western Liaoning basaltic porphyries were derived from a common enriched lithosphere mantle that had previously been metasomatized by fluids related to subduction of Palaeo-Asian sedimentary units. However, the mafic melts were not affected to a significant degree by crustal contamination. Based on earlier studies, these findings provide new evidence that the northeast margin of the NCC had undergone a phase of post-orogenic extensional tectonics during the Middle Triassic. Furthermore, lithospheric thinning occurring across the northern NCC might have been initiated during Early Triassic times and was likely controlled by the final closure of the Palaeo-Asian Ocean, as well as the collision of Mongolian arc terrenes with the NCC.  相似文献   

16.
Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios (0.7061–0.7067) and negative ?Nd (t) (?4.7 to??4.3) and ?Hf (t) values (?4.1 to??1.1), implying that they were derived from an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg# (41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic Belt in China.  相似文献   

17.
Milos Island contains several epithermal deposits (e.g., Profitis Ilias–Chondro Vouno Pb–Zn–Ag–Au–Te–Cu, Triades–Galana–Agathia–Kondaros Pb–Zn–Ag–Bi–W–Mo ± Cu–Au, and Katsimoutis–Kondaros–Vani Pb–Zn–Ag–Mn) of Late Pliocene to Early Pleistocene age. These deposits are hosted in calc-alkaline volcanic rocks emplaced as a result of three successive magma pulses in an emergent volcanic edifice: submarine rhyolitic to rhyodacitic cryptodomes at ca. 2.7. Ma (Profitis Ilias–Chondro Vouno), submarine to subaerial andesite to dacite domes at ca. 2.2 to 1.5 Ma (Triades–Galana–Kondaros–Katsimouti–Vani). Hydrothermal alteration of the volcanic rocks includes advanced argillic- (both hypogene and steam-heated), argillic, phyllic, adularia-sericite and propylitic types. In the northern sector (Triades–Galana–Agathia–Kondaros), initial magma degassing derived from andesitic–dacitic intrusives along NE–SW to E–W trending faults resulted in the development of pre-ore hypogene advanced argillic alteration (dickite, alunite, ± diaspore, pyrophyllite, halite, and pyrite) in a submarine environment. Mineralogical data indicate common features among the Profitis Ilias–Chondro Vouno, Kondaros–Katsimoutis–Vani and Triades–Galana mineralized centers, all of which are characterized by the presence of galena, Fe-poor sphalerite, and chalcopyrite as well as abundant barite, adularia, sericite and, to a lesser extent, calcite, which are typical of intermediate-sulfidation epithermal type deposits. Locally, at Triades–Galana and Kondaros–Agathia, high-sulfidation conditions prevailed as suggested by the presence of coexisting enargite and covellite. The high silver and gold content of the western Milos deposits is derived from Ag-bearing sulfosalts (polybasite, pearceite, pyrargyrite, freibergite) and tellurides. Gold at Profitis Ilias, both as native gold and silver-gold tellurides, is present in base-metal precipitates within multicomponent blebs, which recrystallized to form hessite, petzite, altaite, coloradoite, and native gold. Mineralogical evidence (e.g. microchimney structures, copper sulfides, widespread occurrence of barite, aragonite) suggests that precious metal mineralization in western Milos mineralization formed in a submarine setting.We present information on the surface distribution of Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Mo, Bi, W and Cd at western Milos. Gold is enriched at Profitis Ilias–Chondro Vouno deposits and to a lesser extent at Triades–Galana. Arsenic is absent from the southern sector but shows elevated concentrations together with molybdenum, bismuth and tungsten at the northern sector (Triades–Galana, Vani deposits). The differences in precious and base metal abundances may be related to the depths at which the deposits are exposed, and/or different sources of magma. The metal signatures of the Triades–Galana and Agathia–Kondaros–Katsimouti–Vani (Mo–Bi–W–As–Hg–Ag–Au) occurrences compared to Profitis Ilias (Te–Au–Ag) reflect different sources of magma (dacite–rhyodacite for Profitis Ilias, andesite–dacite for Triades–Galana, and dacite for Kondaros–Katsimoutis). The enrichment of Te, Mo, W, and Bi in the deposits is a strong indication of a direct magmatic contribution of these metals.At western Milos, precious and base-metal vein mineralization was deposited during episodic injection of magmatic volatiles and dilution of the hydrothermal fluids by seawater. The mineralization represents seafloor/sub-seafloor precipitation of sulfides that formed in stockwork zones. Base and precious metal mineralization formed from intermediate- to high-sulfidation state fluids and mostly under boiling conditions as indicated by the widespread occurrence of adularia associated with metallic mineralization. We speculate that the widespread occurrence of boiling and the shallow depth of the precious- and base-metal emplacement prevented the formation of seafloor massive sulfides.  相似文献   

18.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

19.
The Anle Zn–Pb deposit, hosted by Upper Cambrian dolostone, is located in the southern Songpan–Ganzi Block in southwest China. In this deposit, ore bodies occur as stratiform lenses and consist of galena, sphalerite and pyrite as ore minerals, and quartz, dolomite and calcite as gangue minerals. The mineralization shows mainly vein, banded and brecciated structures. Four ore bodies have been found in the Anle deposit, with a combined 2.0 million tonnes (Mt) of sulfide ores at average grades of 1.64 wt.% Pb, 6.64 wt.% Zn and 45 g/t Ag. Brown, brownish-yellow and yellow sphalerite samples have δ66Zn values ranging from + 0.08 to + 0.10‰ (average + 0.09‰, n = 3), + 0.12 to + 0.38‰ (average + 0.24‰, n = 8) and + 0.40 to + 0.50‰ (average + 0.46‰, n = 3), respectively. We interpret the progressively heavier Zn isotopes from brown to yellow sphalerite as being led by kinetic Raleigh fractional crystallization. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 4.8 to − 0.2‰ (average − 1.7‰, n = 7) and + 17.9 to + 21.4‰ (average + 19.6‰, n = 7), respectively. Whole-rock δ13CPDB and δ18OSMOW values of the Cambrian ore-hosting dolostone range from + 0.1 to + 1.1‰ (average + 0.6‰, n = 3) and + 23.2 to + 24.1‰ (average + 23.6‰, n = 3), respectively. This suggests that carbon in the ore-forming fluids was provided by the host dolostone through carbonate dissolution. δ34SCDT values of sulfide samples range between − 1.3‰ and + 17.8‰ with an average value of + 6.3‰ (n = 25), lower than evaporites (such as barite + 19.8‰) in the overlaying Lower Ordovician sedimentary strata. The data suggest that sulfur in the hydrothermal fluids were derived from evaporites by thermo-chemical sulfate reduction (TSR). 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for sulfide minerals range from 17.63 to 17.86, 15.58 to 15.69 and 37.62 to 37.95, respectively. The data are similar to those of the age-corrected Cambrian ore-hosting dolostone (206Pb/204Pb = 17.70–17.98, 207Pb/204Pb = 15.58–15.65 and 208Pb/204Pb = 37.67–38.06), but lower than those of age-corrected Ordovician sandstone and slate (206Pb/204Pb = 18.54–19.58, 207Pb/204Pb = 15.73–15.81 and 208Pb/204Pb = 38.44–39.60). This indicates that ore Pb was most likely to be derived from the Cambrian ore-hosting dolostone. Therefore, our new geological and isotopic evidence suggests that the Anle Zn–Pb deposit is best classified to be an epigenetic carbonate-hosted Mississippi Valley-type (MVT) deposit.  相似文献   

20.
The Wunugetushan porphyry Cu–Mo deposit is located in northeastern China. The deposit lies within the Mongolia–Erguna metallogenic belt, which is associated with the evolution of the Mongol–Okhotsk Ocean. The multiple episodes of magmatism in the ore district, occurred from 206 to 173 Ma, can be divided into pre-mineralization stage (biotite granite), mineralization stage (monzogranitic porphyry and rhyolitic porphyry), and post-mineralization stage (andesitic porphyry). The biotite granite has (87Sr/86Sr)i values of 0.704105–0.704706, εNd(t) values of ?0.67 to ?0.07, and εHf(t) values of ?0.4 to 2.8, yielding Hf two-stage model ages (TDM2) 1250–1067 Ma, and Nd model ages of 1.04–0.96 Ga, indicating that the pre-mineralization magmas were generated by the remelting of Neoproterozoic juvenile crustal material. The monzogranitic porphyry has (87Sr/86Sr)i values of 0.704707–0.706134, εNd(t) values of 0.29–1.33, and εHf(t) values of 1.0–2.9, yielding TDM2 model ages of 1173–1047 Ma. The rhyolitic porphyry has (87Sr/86Sr)i ratio of 0.702129, εNd(t) value of ?0.21, and εHf(t) values of ?0.5 to 7.1, TDM2 model ages from 1269 to 782 Ma. These results show that the magmas of mineralization stage were generated by the partial melting of juvenile crust mixed with mantle-derived components. The andesitic porphyry has (87Sr/86Sr)i ratio of 0.705284, εNd(t) value of 0.82, and εHf(t) values from 4.1 to 7.4, indicating that the post-mineralization magma source contained more mantle-derived material. The Mesozoic Cu–Mo deposits which genetically related to Mongol–Okhotsk Ocean were temporally distributed in Middle to Late Triassic (240–230 Ma), Early Jurassic (200–180 Ma), and Later Jurassic (160–150 Ma) period. The Middle Triassic to Early Jurassic Cu–Mo mineralization was dominated by Mongol–Okhotsk oceanic plate southeast-directed subducted beneath the Erguna massif. The Later Jurassic Cu–Mo mineralization was controlled by the continent–continent collision between Siberia plate and Erguna massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号