首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Applied Geochemistry》1999,14(7):835-859
The overall hydrogeochemical conditions at and in the near vicinity of the underground experimental Äspö Hard Rock Laboratory (HRL) in SE Sweden have been investigated. Groundwater data from more than 400 samples have been compiled and evaluated. The groundwater samples represent depths down to 1700 m below sea level and sampling has been performed prior to and during the HRL tunnel excavation. Episodic events have to a great extent influenced the hydrochemical evolution since the last glaciation which ended some 13 ka ago. At that time glacial melt water was flushed under hydraulic pressure down into the fracture system to a depth of at least several hundred metres. The next episodic event took place when the Baltic freshwater lake transformed into the brackish Litorina Sea some 7 ka ago. At this time Äspö was covered by the sea and these denser, more saline waters partly replaced the glacial water down to a depth where the density equilibrated with the replacement sea water. At some time around 3–4 ka ago, Äspö started to rise above sea level and meteoric water began to infiltrate the rock.The overall trend of increasing salinity with depth may easily be misinterpreted as a fairly simple groundwater system, evolving from a two component evolution path between non-saline and saline groundwaters. However, when combining the results from environmental isotopes and the chemical parameters using a new modelling tool named M3 (Multivariate Mixing and Mass balance calculations), a higher resolution was obtained and a more complex groundwater pattern, which reflects the present and paleo-hydrogeological events, can be recognised.The measured groundwater composition was modelled to be a mixture of meteoric, past and present Baltic seawater, glacial (or cold climate recharge) and brine type of waters. The modelling result shows that the processes considered to have a dominating impact on the present Äspö groundwater chemistry are mixing, both in disturbed and undisturbed systems, calcite dissolution and precipitation, redox reactions and biological processes. The undisturbed groundwater conditions prior to the HRL tunnel construction at Äspö consisted of:
  • 1.A dominating proportion of meteoric fresh water in the upper 250 m of the aquifer.
  • 2.A brackish–saline water consisting of mixing proportions of present and ancient Baltic Sea water and glacial melt water present to a depth of 250–600 m.
  • 3.Saline water still containing proportions of glacial water which could represent even older glaciations, and brines, a large portion of which have been stagnant for perhaps millions of years, below a depth of 600 m.
During the HRL tunnel construction there were changes in the composition of the water flowing into the tunnel at different locations. Although the variation in salinity was relatively small, the variations in the mixing proportions of the different water types were substantial.  相似文献   

2.
Most coal reservoirs in China have low permeability, which causes gas drainage to be inefficient. The method of cyclic cryogenic fracturing basing on freezing–thawing (F–T) fracturing effects is proposed to break coal to increase its permeability. An F–T experiment was carried out at different freezing temperatures using a nuclear magnetic resonance (NMR) test and an ultrasonic test. We investigated the evolution of coal pore structure under different freezing temperature F–T cycles and the mechanism of F–T fracturing. The results indicate that the frost force and the thermal stress in the cyclical process of F–T work together to cause fracture formation and fatigue damage. When the freezing temperature decreases, the network of pores and fissures becomes more developed and the number of mesopores, macropores and micro-fractures increases. This suggests that the network of pore-fractures in coal will be more interconnected and the space available for gas seepage will be larger. Ultimately, this significantly increases the efficiency of gas drainage.  相似文献   

3.
4.
《Comptes Rendus Geoscience》2019,351(2-3):154-162
We present a comprehensive analysis of electrical resistivity for liquid Fe–Si, Fe–S, and Fe–O alloys from first principles computations, covering the pressure/temperature conditions and major light element candidates inside the cores of terrestrial planets. By fitting optical conductivity with the Drude formula, we explicitly calculate the effective electron mean free path, and show that it becomes comparable to the interatomic distance for high densities and Si/S concentrations (Ioffe–Regel criterion). In approaching the Ioffe–Regel criterion, the temperature coefficient of resistivity decreases with compression for all compositions, eventually vanishes (Fe–Si), or even changes sign (Fe–S). Differences in resistivity and the degree of saturation between the iron alloys studied are explained in terms of iron–light element coordination numbers and their density dependence. Due to competing temperature and pressure effects, resistivity profiles along proposed core adiabats exhibit a small negative pressure gradient.  相似文献   

5.
The paper presents petrological and geochemical data on mantle peridotite, basalt, and metamorphic rocks sampled in Cruise 36 of the R/V Professor Logachev at the MAR axial zone between 17° and 20° N. These data are interesting not only as providing new information on the inner structure of the oceanic crust in the still-poorly known axial MAR segment but also in the context of the fundamental problem of interaction between magmatic and hydrothermal systems in slow-spreading mid-oceanic ridges. The MAR axial zone between 17° and 20° N was determined to host both weakly and strongly depleted residual peridodites, which suggests that the degree of mantle source melting significantly varied along the ridge axis in this segment. The MAR crest zone comprises slabs of serpentinized peridotite brought to the seafloor surface at various time. The most strongly depleted mantle peridotites likely uplifted later than the mildly and weakly depleted rocks in the same areas. A mantle reservoir beneath the MAR axial zone at 20° N is not isotopically related to the mantle source of the parental MORB melts, and high-Mg metabasites exposed at 17°56- N were derived from a crustal source that was modified near the root zone of a high-temperature hydrothermal system. The studied area seems to display traces of an extinct hydrothermal field and likely an ore occurrence related to it.  相似文献   

6.
7.
Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.  相似文献   

8.
The crystallization sequence of a basaltic andesite from Bezymianny Volcano, Kamchatka, Russia, was simulated experimentally at 100 and 700 MPa at various water activities (aH2O) to investigate the compositional evolution of residual liquids. The temperature (T) range of the experiments was 950–1,150 °C, aH2O varied between 0.1 and 1, and the log of oxygen fugacity (fO2) varied between quartz–fayalite–magnetite (QFM) and QFM + 4.1. The comparison of the experimentally produced liquids and natural samples was used to constrain the pressure (P)TaH2O–fO2 conditions of the Bezymianny parental magma in the intra-crustal magma plumbing system. The phase equilibria constraints suggest that parental basaltic andesite magmas should contain ~2–2.5 wt% H2O; they can be stored in upper crustal levels at a depth of ~15 km, and at this depth they start to crystallize at ~1,110 °C. The subsequent chemical evolution of this parental magma most probably proceeded as decompressional crystallization occurred during magma ascent. The final depths at which crystallization products accumulated prior to eruption are not well constrained experimentally but should not be shallower than 3–4 km because amphibole is present in natural magmas (>150 MPa). Thus, the major volume of Bezymianny andesites was produced in a mid-crustal magma chamber as a result of decompressional crystallization of parental basaltic andesites, accompanied by mixing with silicic products from the earlier stages of magma fractionation. In addition, these processes are complicated by the release of volatiles due to magma degassing, which occurs at various stages during magma ascent.  相似文献   

9.
A number of fine-grained sericite bearing pelitic, schistose lithologies occur along the Archean (Banded Gneiss Complex)-Proterozoic (Aravalli Supergroup) contact (APC) in the Udaipur valley in NW Indian craton. These Al-rich lithologies (subsequently metamorphosed) have been described as ‘paleosols’, developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleoproterozoic Aravalli quartzite. The paleosol was developed between 2.5 and 2.1, coincident with the globally recognized Great Oxidation Event (GOE). In previous studies these paleosol sections were interpreted to have developed under reducing environment, however, the finding of a ‘ferricrete’ zone in the upper part of Tulsi Namla section (east of Udaipur) during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development. The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons. The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part. Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part, in the ferricrete zone. The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.  相似文献   

10.
In the interval of the Triassic–Jurassic boundary, 80% of the marine species became extinct. Four main hypotheses about the causes of this mass extinction are considered: volcanism, climatic oscillations, sea level variations accompanied by anoxia, and asteroid impact events. The extinction was triggered by an extensive flooding of basalts in the Central Atlantic Magmatic Province. Furthermore, a number of meteoritic craters have been found. Under the effect of cosmic causes, two main sequences of events developed on the Earth: terrestrial ones, leading to intensive volcanism, and cosmic ones (asteroid impacts). Their aftermaths, however, were similar in terms of the chemical compounds and aerosols released. As a consequence, the greenhouse effect, dimming of the atmosphere (impeding photosynthesis), ocean stagnation, and anoxia emerged. Then, biological productivity decreased and food chains were destroyed. Thus, the entire ecosystem was disturbed and a considerable part of the biota became extinct.  相似文献   

11.
Two distal Cretaceous–Paleogene (K/Pg) boundary sections in the Central Apennine region (Italy) have been studied: Bottaccione Gorge and Contessa Highway. Geochemical and carbon isotope analyses on the infilling of trace fossils and on the host sedimentary rocks were performed to determine paleoenvironmental conditions during the Cretaceous–Paleogene transition. Major and trace element contents were measured in a 63 cm-thick interval at Bottaccione Gorge (from 22 cm below to 41 cm above the K/Pg boundary) and in a 72 cm-thick interval at Contessa Highway (from 43 cm below to 29 cm above the K/Pg boundary). Even though the K/Pg ejecta layer is now depleted at these sections due to continuous oversampling, the uppermost Maastrichtian and lowermost Danian deposits record the paleoenvironmental conditions prior to and after the K/Pg event. We used redox-sensitive element ratios (V/Al, Cr/Al, Co/Al, Ni/Al Cu/Al, Zn/Al, Mo/Al Pb/Al and U/Mo) and detrital element ratios (K/Al, Rb/Al, Zr/Al and ƩREE/Al) as proxies of certain environmental parameters, used for paleoenvironmental reconstruction. In general, similar values for elemental ratios are registered within Maastrichtian and Danian deposits, which supports similar paleoenvironmental conditions prior to and after the K/Pg event as well as the rapid reestablishment of the pre-impact conditions (i.e., oxygenation, nutrient availability, and/or sedimentary input). An enrichment in certain redox-sensitive elements above the K/Pg at the Bottaccione Gorge section suggests lower oxygenation, as also evidenced by the tracemaker community. Carbon isotope composition data from the infilling material of trace fossils furthermore reveals values similar to those of the host rocks at the corresponding depth, which supports an active infilling by nearly contemporaneous bioturbation during sediment deposition.  相似文献   

12.
Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Capyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4–10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to a pressure of about 0.8–0.9 GPa. The temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with an uniform mineral composition record the temperature of the last complete recrystallization at 940–1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and an oxygen fugacity significantly higher than FMQ buffer (Δlog $ f_{O_2 } Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Capyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4–10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to a pressure of about 0.8–0.9 GPa. The temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with an uniform mineral composition record the temperature of the last complete recrystallization at 940–1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and an oxygen fugacity significantly higher than FMQ buffer (Δlog = 1.3–1.9). Mafic veins are considered to be a crystallization product from basic melt enriched in Mg and Ni via interaction with peridotite. The geochemical type of the melt reconstructed by the equilibrium with Ca-pyroxene is defined as T-MORB: (La/Sm)N ≈ 1.6 and (Ce/Yb)N ≈ 2.3, which is well consistent with compositional variations of modern basaltic lavas in this segment of Mid-Atlantic Ridge, including new data on quenched basaltic glasses. Original Russian Text ? A.N. Pertsev, N.S. Bortnikov, L.Ya. Aranovich, E.A. Vlasov, V.E. Beltenev, V.N. Ivanov, S.G. Simakin, 2009, published in Petrologiya, 2009, Vol. 17, No. 2, pp. 139–153.  相似文献   

13.
《Gondwana Research》2007,11(3-4):267-276
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

14.
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone, along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin, wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between 297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic, arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis constrains f S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids and precipitated because of variations in pH and f O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal alteration zone adjacent to the mineralised quartz veins.  相似文献   

15.
The Araucaria Plateau is a geomorphological unit that occupies approximately three-quarters of the terrain in the southern region of Brazil. The plateau displays different altitudinal levels (600 to <1400 m a.s.l.) that are locally recognized as remnants of planed surfaces (S8–S1). These surfaces are maintained by basic (S3–S8) and acidic (S1 and S2) volcanic flows from the Neocretaceous period of the Paraná Basin. The largest extent of this plateau is located in a humid subtropical climate zone. Colluvial, colluvial–alluvial, alluvial sediments and paleosols (Ab diagnostic horizons) occur predominantly in S2. The paleosols are located in low-hierarchical-order fossil valleys (first- to fourth-order in Strahler's stream classification) and valley heads, which are referred to as paleovalleys in this paper. We employed these paleosols as stratigraphic level markers of the pedogenesis of the regional Upper Quaternary and propose their importance as records of the paleoenvironmental conditions of the Araucaria Plateau in areas above 1200 m a.s.l. These paleosols were dated by 14C and show ages between 23.8 ± 0.05 kyr BP (28.06–29.08 kyr cal. BP) and 41.16 ± 0.48 kyr BP (44.13–45.58 kyr cal. BP). The calibrated ages are related to Marine Isotope Stage 3 (MIS 3), in which the last period of global warming occurred (approximately 60–25 kyr cal. BP). We integrated the morphological, pedogeochemical, clay fraction mineralogy, micromorphological and δC-13 analyses of five paleosols from S2 to verify the paleoenvironmental conditions of the Araucaria Plateau and its correspondence with the paleoclimatic phenomena that were identified on a global scale during MIS 3 in the Southern Hemisphere. We obtained the following conclusions: a) the properties of paleosols reflect pedological processes that are adjusted to the paleoenvironmental conditions at the end of MIS 3 and the transition to MIS 2 (Last Glacial Maximum); b) aplasmogenic partial acidolysis was the predominant pedogeochemical process during MIS 3; c) during this period, the water regime was sufficiently humid to develop hydromorphic horizons in the valley bottoms of the entire drainage network to the valley heads; d) regional change toward a drier hydric regime occurred in MIS 2, when erosion of the paleosols predominated; and e) in MIS 1 (current Holocene interglacial), burial of the paleosols and relief inversion occurred, which resulted in fossilization of the valleys.  相似文献   

16.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   

17.
In the context of radioactive waste repository in geological formation, kaolinite-metallic iron interaction in chlorine solution was conducted in batch experiments, under anoxic conditions at 90 °C during 9 months. After a mineralogical characterization at a global scale, products were analyzed at the micrometer and nanometer scales by X-ray absorption spectroscopic techniques (XAS and STXM). Absorption at Al, Si and Fe edges was investigated to have a complete overview of the distribution and status of constituting elements. Whereas Si K-edge results do not evidence significant evolution of silicon status, investigations at Al K-edge and Fe L-edges demonstrate variations at aggregate and particle scales of IVAl:VIAl and Fe2+:Fe3+ ratios. Spectroscopic data evidence the systematic crystallization of Fe-serpentines onto the remaining particles of kaolinite and the absence of pure species (kaolinite or Fe-serpentines). Combination of spatially resolved spectroscopic analyses and TEM-EDXS elemental distribution aims to calculate unit cell formulae of Fe-serpentines layers and abundance of each species in mixed particles. For most of the investigated particles, results reveal that the variations of particles composition are directly linked to the relative contributions of kaolinite and Fe-berthierine in mixed particles. However, for some particles, microscale investigations evidence crystallization of two other Fe-serpentines species, devoid of aluminum, cronstedtite and greenalite.  相似文献   

18.
A detailed sedimentological analysis of the so called “Chachil Limestones” at its type locality around the Mirador del Chachil area, southwestern Neuquén province, Argentina, is presented in this paper for the first time. It is based on a macro/microfacial analysis and their environmental interpretation by means on texture, fabric, bioclasts, intrabasinal and extrabasinal grain amounts, sedimentary structures, bioturbations and hydro-dynamism. Because of the recognition of different facies associations, but no pure limestones, it is more suitable to refer these sediments as the Chachil Formation. The depositional environment of this unit is interpreted to correspond to an internal platform dominated by tides, with carbonate sedimentation disturbed by repeated explosive volcanic episodes, which reduced the sedimentation space, causing retrogradation of the sedimentary system and coastal onlap. In addition, a new recalibration of the U-Pb zircon dating used for the geochronological analysis reveals a small change with regard to previous information that has been used to recalculate the data, is presented in this paper.  相似文献   

19.
Micropalaeontological and isotopic studies of the upper Cenomanian turbiditic/hemipelagic sediments from the High-Tatric unit (Central Western Carpathians; Polish part of the Tatra Mountains) has been undertaken to characterize the sedimentary conditions in the Tatric basin, a part of the Western Tethys, related to the interval preceding the late Cenomanian oceanic anoxic event (OAE2). The deposition of these sediments, including organic-rich layers (TOC up to 0.7%), corresponds to the Rotalipora cushmani foraminiferal Zone. Microfacial, foraminiferal and palynological analyses show that the sea floor was located at upper bathyal depths and the water column was poorly oxygenated. The intrabasinal carbonate material indicates moderate primary productivity with rare periods of upwellings. The scarcity of marine fossils in redeposited material and features of carbonate lithoclasts suggest very low productivity in the nearshore surface water, most probably due to a low-density hyposaline cap as surface runoff from the southern margin of the basin. The carbon isotopic study documents the negative values of δ13Ccarb in the whole section as an effect of transfer of isotopically light carbon sourced from various sources. Such negative values of δ13Ccarb are characteristic of the upper Cenomanian sediments, deposited in relatively shallow water basins, characterized by input of terrestrial organic matter and/or carbonate particles known from the Western Interior sections, the Atlantic coastal plain, the northwestern African margin, the eastern margin of the Apulian Platform and shelf sediments in the NW Europe and Tethyan Himalayas. Most probably, all of these events could be related to the global sea level fluctuations that occurred ca. 95.5–94.5 Ma comparing with the Haq (2014) eustatic curve.  相似文献   

20.
Crystallization of garnet in high-chromium restite formed under the conditions of partial melting in the spinel facies and subsequently subducted into the garnet depth facies was studied experimentally in the MgO–Al2O3–Cr2O3–SiO2 system. The crystallization of garnet and the dependence of its composition on the temperature and bulk composition of the system with low Al concentration were studied as well. Experiments in the knorringite–majorite–pyrope system with 5, 10, and 20 mol % Prp were carried out at 7 GPa. The phase associations for the starting composition of pure knorringite Mg3Cr2Si3O12 included chromiumbearing enstatite MgSiO3 (up to 3.2 wt % Cr2O3) and eskolaite Cr2O3. Addition of Al resulted in crystallization of high-chromium majoritic garnet. The portion of garnet in the samples always exceeded the concentration of pyrope in the starting composition owing to the formation of the complex majorite–knorringite–pyrope series of solid solutions. With increasing content of pyrope (from 5 to 20 mol %) and increasing temperature, the modal concentration of garnet increased significantly (from 6–12 to 22–37%). The garnet was characterized by high concentrations of the pyrope (23–80 mol %) and knorringite (22–70 mol %) components. The excess of Si (>3 f.u.) with decreasing Cr concentration provided evidence for the contribution of the majorite–knorringite trend to the variation in garnet composition. On the basis of the natural data, most of the garnets composing xenoliths of ultrabasic rocks in kimberlites and occurring as inclusions in diamonds are low-chromium; i.e., their protolith was not subjected to partial melting, at least in the spinel depth facies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号