首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic goal of the present research is to investigate the estimation of both the in-situ density and moisture content within the Hot Mix Asphalt (HMA) pavement layer(s) in a non-destructive way using Ground Penetrating Radar (GPR) trace reflection amplitude. For this purpose, an extensive pavement survey was conducted using an air-coupled GPR system, operating at 1 GHz or alternatively with a 2 GHz central frequency. The collected data were analyzed comparatively for the two antennae. The variability of electric permittivity caused by variations in HMA material is discussed, while the effect of the different frequencies is compared on the ability to retrieve permittivity, in-situ density and moisture content of the compacted HMA material using relationships suggested in reviewed international literature. The main finding of the present research is that for the same type of HMA material, the assessment of the material properties appears to be independent from the two central frequencies of investigation. However, there is evidence concerning the variations between the GPR wave data for the two different frequencies. The research highlights that the increased penetration depth of the 1 GHz antenna can provide an increased identification of areas of potential moisture within the body of HMA layer, and suggests that the variations between the permittivity values for the two different frequencies could be used to assess the homogeneity of material density with depth as an indicator of the mixture compaction. Additional findings are included within the paper.  相似文献   

2.
This paper highlights the efficiency and complementarity of a light package of geophysical techniques to study the structure of karst Unsaturated Zone (UZ) in typical Mediterranean environment where soil cover is thin or absent. Both selected techniques, 2D Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), are widely used in environmental studies and their application is accessible for a lot of scientists/engineers. However, GPR or ERT alone is not able to provide an enhanced characterization of geological features in karst media. In the present study, GPR results supply a near surface high resolution imaging and thus can provide relevant geological information such as stratifications and fractures. Despite the quality of the results GPR's investigation depth remains limited to around 12 m. Apparent and inverted resistivity provided by ERT surveys shows strong lateral and vertical variations. These variations can inform about general geological structuring and feature orientation. ERT is able to prospect down to 40 m but it's a low resolution integrative technique. In the study area the investigated limestone is a commonly electrical resistive formation (more than 2000 Ω.m). However deeper than 5–7 m, the ERT profiles reveal several zones of moderate resistivity (around 900 Ω.m). In these zones a stratification change corresponding to slanted bedding is clearly identified by GPR results. The combination of both GPR and ERT results can allow a well-established geological interpretation. These moderate resistivity zones with slanted beddings can explain the presence of a perennial water flow point 35 m below the surface of the studied site within the underground gallery of the Low-Noise Underground Laboratory (LSBB).  相似文献   

3.
A dielectric model for thawed and frozen Arctic organic-rich soil (50% organic matter) has been developed. The model is based on soil dielectric measurements that were collected over ranges of gravimetric moisture from 0.03 to 0.55 g/g, dry soil density from 0.72 to 0.87 g/cm3, and temperature from 25 to −30 °C (cooling run) in the frequency range of 0.05–15 GHz. The refractive mixing dielectric model was applied with the Debye multi-relaxation equations to fit the measurements of the soil’s complex dielectric constant as a function of soil moisture and wave frequency. The spectroscopic parameters of the dielectric relaxations for the bound, transient bound, and unbound soil water components were derived and were complimented by the thermodynamic parameters to obtain a complete set of parameters for the proposed temperature-dependent multi-relaxation spectroscopic dielectric model for moist soils. To calculate the complex dielectric constant of the soil, the following input variables must be assigned: (1) density of dry soil, (2) gravimetric moisture, (3) wave frequency, and (4) temperature. The error of the dielectric model was evaluated and yielded RMSEε values of 0.348 and 0.188 for the soil dielectric constant and the loss factor, respectively. These values are on the order of the dielectric measurement error itself. The proposed dielectric model can be applied in active and passive microwave remote sensing techniques to develop algorithms for retrieving the soil moisture and the freeze/thaw state of organic-rich topsoil in the Arctic regions.  相似文献   

4.
The Late Jurassic Kimmeridge Clay Formation (KCF) is an economically important, organic-rich source rock of Kimmeridgian–Early Tithonian age. The main rock types of the KCF in Dorset, UK, include grey to black laminated shale, marl, coccolithic limestone, and dolostone, which occur with an obvious cyclicity at astronomical timescales. In this study, we examine two high-resolution borehole records (Swanworth Quarry 1 and Metherhills 1) obtained as part of a Rapid Global Geological Events (RGGE) sediment drilling project. Datasets examined were total organic carbon (TOC), and borehole wall microconductivity by Formation Microscanner (FMS). Our intent is to assess the rhythmicity of the KCF with respect to the astronomical timescale, and to discuss the results with respect to other key Late Jurassic geological processes. Power spectra of the untuned data reveal a hierarchy of cycles throughout the KCF with ~ 167 m, ~ 40 m, 9.1 m, 3.8 m and 1.6 m wavelengths. Tuning the ~ 40 m cycles to the 405-kyr eccentricity cycle shows the presence of all the astronomical parameters: eccentricity, obliquity, and precession index. In particular, ~ 100-kyr and 405-kyr eccentricity cycles are strongly expressed in both records. The 405-kyr eccentricity cycle corresponds to relative sea-level changes inferred from sequence stratigraphy. Intervals with elevated TOC are associated with strong obliquity forcing. The 405-kyr-tuned duration of the lower KCF (Kimmeridgian Stage) is 3.47 Myr, and the upper KCF (early part of the Tithonian Stage, elegans to fittoni ammonite zones) is 3.32 Myr. Two other chronologies test the consistency of this age model by tuning ~ 8–10 m cycles to 100-kyr (short eccentricity), and ~ 3–5 m cycles to 36-kyr (Jurassic obliquity). The ‘obliquity-tuned’ chronology resolves an accumulation history for the KCF with a variation that strongly resembles that of Earth's orbital eccentricity predicted for 147.2 Ma to 153.8 Ma. There is evidence for significant non-deposition (up to 1 million years) in the lowermost KCF (bayleimutabilis zones), which would indicate a Kimmeridgian/Oxfordian boundary age of 154.8 Ma. This absolute calibration allows assignment of precise numerical ages to zonal boundaries, sequence surfaces, and polarity chrons of the lower M-sequence.  相似文献   

5.
In rough geologic media such as alluvial gravels, glacial tills, talus or colluvium, the grain sizes may span the range of GPR in situ wavelengths. Here we experimentally and numerically modeled the scattering loss from both rough-surface and subsurface dielectric scatterers. The combination of the selected radar frequency and the dimension of the scatterers placed the scattering within the Mie regime. We compared the GPR signal amplitude and waveform reflected from the metal sheet on the bottom of a large box filled with boulders with the numerically computed response from a discrete random medium (DRM) model. The DRM consists of a collection of densely packed ellipsoids. The size and orientation of the ellipsoids are randomized; the size has a Gaussian distribution similar to the physical experiment. The dielectric permittivity of the ellipsoids is constant and their electric conductivity is negligible. The starting in situ dominant pulse wavelength at 900 MHz was about 17 cm, as was about the average rock dimension. Experimentally, the 900-MHz radar pulse underwent most dispersion within the first in situ wavelength of depth, and then, at 500–700 MHz dominant frequency, the pulses underwent a near inverse range dependency loss rate, as if the media were a pure dielectric. The numerical model agrees well with the experimental data. Both experimental and numerical results support a significant scattering loss in Mie regime. Besides the scattering attenuation loss, velocity dispersion has also been observed from both observation and simulation. However, the scattering attenuation and dispersion cannot be fit by the Kramers–Kronig relation that is commonly found in intrinsic attenuation and worth further theoretical investigations.  相似文献   

6.
A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene–Eocene Thermal Maximum (PETM; ~ 55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event – that we term the Dan-C2 event – is characterized by a conspicuous double negative excursion in δ13C and δ18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETM in the early Paleocene at ~ 65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~ 40 ky and are separated by a short plateau that brings the combined duration to ~ 100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO event may reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.  相似文献   

7.
Garnet geochronology was used to provide the first direct measurement of the timing of eclogitization in the central Himalaya. Lu–Hf dates from garnet separates in one relict eclogite from the Arun River Valley in eastern Nepal indicate an age of 20.7 ± 0.4 Ma, significantly younger than ultra-high pressure eclogites from the western Himalaya, reflecting either different origins or substantial time lags in tectonics along strike. Four proximal garnet amphibolites from structurally lower horizons are 14–15 Ma, similar to post-eclogitization ages published for rocks along strike in southern Tibet. PT calculations indicate three metamorphic episodes for the eclogite: i) eclogite-facies metamorphism at ~ 670 °C and ≥ 15 kbar at 23–16 Ma; ii) a peak-T granulite event at ~ 780 °C and 12 kbar; and iii) late-stage amphibolite-facies metamorphism at ~ 675 °C and 6 kbar at ~ 14 Ma. The garnet amphibolites were metamorphosed at ~ 660 °C. Three models are considered to explain the observed PTt evolution. The first assumes that the Main Himalayan Thrust (basal thrust of the Himalayan thrust system) cuts deeper at Arun than elsewhere. While conceptually the simplest, this model has difficulty explaining both the granulite-facies overprint and the pulse of exhumation between 25 and 14 Ma. A second model assumes that (aborted) subduction, slab breakoff, and ascent of India's leading edge occurred diachronously: ~ 50 Ma in the western Himalaya, ~ 25 Ma in the central Himalaya of Nepal, and presumably later in the eastern Himalaya. This model explains the PTt path, particularly heating during initial exhumation, but implies significant along-strike diachroneity, which is generally lacking in other features of the Himalaya. A third model assumes repeated loss of mantle lithosphere, first by slab breakoff at ~ 50 Ma, and again by delamination at ~ 25 Ma; this model explains the PTt path, but requires geographically restricted tectonic behavior at Arun. The PTt history of the Arun eclogites may imply a change in the physical state of the Himalayan metamorphic wedge at 16–25 Ma, ultimately giving rise to the Main Central Thrust by 15–16 Ma.  相似文献   

8.
In the past decades, archaeologists have found evidences for prehistorical human activity in the Qinghai–Tibetan Plateau (QTP). In 1982, some Paleolithic stone tools were found in a section from a terrace of the Xiao Qaidam Lake in the Qaidam Basin, NE of the QTP. The age of this Paleolithic site has remained unknown by far. Some believed that the age of human inhabitation in this Paleolithic site was about 30 ka. In this study, quartz optically stimulated luminescence was used to date 10 samples collected from four sections in the Xiao Qaidam Lake, using the single-aliquot regeneration-dose protocol. The two samples from section XCDH2, which is from a lake terrace about ~7–8 m above the present lake level and in which the top gravel layer contains stone tools, were not well-bleached before deposition. Their ages (>101 and >159 ka) determined by SAR should be considered minimums. OSL dating results of six samples from two sections (XCDH1 and XCDH3) of an adjacent lake terrace, which is ~12 m above the present lake level, suggest two possibilities for the age of the tool-bearing gravel layer: (1) younger than ~3 ka if the lake terrace of XCDH2 is younger than the terrace represented by XCDH1 and XCDH3; or (2) between ~3 and 11 ka if these two terraces are part of the deposit of the same time period. In either case, the age of the archaeological layer should be much younger than the previously proposed ~30 ka. As the climate in the early Holocene after 11 ka was increasingly warm and the Xiao Qaidam Lake area could be suitable for human inhabitation then, we deduce that the age range of ~3–11 ka is more likely the time frame for this archaeological site. The age of 3.1 ± 0.3 ka for the surface of terrace XCDH1/XCDH3 suggests a significant lake level decrease after this time and a corresponding arid event at ~3 ka; the lake level did not reach this level again after that time. Section XCDH4 is more than 40 m above the present lake level, and two samples gave ages of 37 ± 4 and 51 ± 4 ka. These two dates and the dates from the other sections demonstrate that two lake levels higher than present existed for Xiao Qaidam Lake, one at ~12 m and dated ~3–11 ka and the another at >40 m and dated ~37–51 ka.  相似文献   

9.
Where they are preserved, landforms that have been truncated and offset by past fault movements provide potentially valuable quantitative data that can be used to estimate slip rates. At such locations, it is important to investigate the fault zone in sufficient detail to understand how displacements are accommodated on individual fault strands. At a site along a northern section of the Alpine fault zone on the South Island of New Zealand, surface mapping of a series of faulted river terraces and channels has revealed a complicated and poorly understood paleoearthquake history. We have acquired high-resolution 2- and 3-D ground-penetrating radar (GPR) data over a large area (~ 500 × 500 m) of the terraces to map along-strike changes in shallow (<20 m) fault zone morphology. By identifying distinct reflection patterns within the topographically migrated 3-D GPR volumes and extrapolating them to the longer and more widely spaced GPR profiles, we determined the subsurface extent of two main structural/depositional facies that were juxtaposed by three left-stepping en-echelon fault strands. Two regions of warped strata are interpreted to result from transpressive folding between the overlapping strands, where displacement is transferred from one fault to the next. We suggest that diffuse deformation between the overlapping fault tips results in anomalously low estimates for horizontal and vertical fault displacements of some geomorphic features.  相似文献   

10.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

11.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

12.
Our study summarizes data from six small water reservoirs in West Slovakia and analyzes the occurrence of zooplankton groups in relation to physico-chemical and catchment variables. The reservoirs are in two different catchments – of the Morava and Váh rivers. A total of 103 species were identified; 64 crustaceans (in both the pelagic and littoral zones) and 39 planktonic Rotifera in the pelagic zones. Significant differences were observed in species richness, abundance and biomass of planktonic crustaceans: 48 species were characteristic of the Váh catchment, while 53 were found in the Morava catchment. The density of zooplankton in the three reservoirs of the Váh River catchment ranged from 102 ind L?1 to 21,488 ind L?1 and the zooplankton biomass ranged from 0.12 mg L?1 to 103.29 mg L?1. The density of zooplankton in three Morava River catchment reservoirs ranged from 2 ind L?1 to 3928 ind L?1 and the zooplankton biomass ranged from 0.1 mg L?1 to 27.3 mg L?1. The differences were found to be related to catchment (altitude and catchment affiliation), chemical (BOD5, DO) and biological (Chromophyta, Chlorophyta) factors. Eutrophication of reservoirs in the Váh catchment was mainly due to agriculture and fish management, resulting in high nutrient concentrations. Species richness showed an unimodal response to BOD5 and N-NH4 with near optimum low values, 4.6 and 0.19 respectively. The relationship to oxygen content reflects preferences for less eutrophic waters and species richness tended to decrease with increasing DO and to decrease with increasing nutrient content.  相似文献   

13.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

14.
Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.  相似文献   

15.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

16.
High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk   总被引:1,自引:0,他引:1  
Marine sediments contain important archives of past ocean and climate changes, but at high latitudes the absence of carbonate has prevented the construction of accurate chronological models. We have begun a study to (1) determine the accuracy of luminescence ages in deep-sea marine sediments, e.g. by comparison with marine oxygen isotope stratigraphy where possible, (2) describe changes in sedimentation rate through time, and (3) test whether it is possible to date back to marine isotope stage 5e (MIS 5e). We show here that optical dating of fine grains of quartz from the central Sea of Okhotsk is able to provide an accurate and precise chronology for the reconstruction of the palaeoceanic and palaeoclimatic environment at our site. The upper 6.5 m of the 18.42 m long core MR0604-PC07A is believed, based on its magnetic susceptibility and the oxygen isotope (δ18O) records to contain the last ~150 ka. Forty OSL samples were taken from this upper part of the core. The single-aliquot regenerative-dose (SAR) procedure is used for equivalent dose (De) determination. The luminescence characteristics of fine-grained quartz (4–11 μm) extracted from the core are described. The OSL signal is dominated by the fast component and a dose recovery test shows that we can accurately measure a known dose given in the laboratory prior to any heat treatment. Dose rates were determined using high-resolution gamma spectrometry, and vary between 0.4 and 1.6 Gy/ka. The OSL ages from this section lie between ~140 ka and ~15 ka and are in very good agreement with the δ18O stratigraphy up to MIS 5e. A clear change in sedimentation rate is identified: between ~139 and 110 ka, the sedimentation rate was ~0.09 m/ka, but then from ~110 to 15 ka, the sedimentation rate decreases to a constant value of ~0.04 m/ka. Our data confirm that OSL dating using widely distributed fine-grain quartz has great potential for dating deep-sea sediments. Because luminescence methods use clastic materials, they do not depend on the presence of biogenic carbonate. As a result it is now likely that we can establish a chronology in regions of the ocean that were previously undatable.  相似文献   

17.
Lengshuiqing is part of the late Proterozoic igneous province from the western margin of the Yangtze craton. The Lengshuiqing area comprises five ultramafic–mafic intrusions, emplaced in the late Proterozoic Yanbian Group. The intrusions from Lengshuiqing contain cumulate ultramafic zones (peridotite + olivine pyroxenite), with cumulus olivine and Cr-spinel, and intercumulus pyroxenes, hornblende, phlogopite and plagioclase. Ni–Cu ore (pyrrhotite + pentlandite + chalcopyrite) is hosted in the ultramafic zones. Olivine-free diorite–quartz diorite ± gabbro and granite zones commonly occur above the ultramafic rocks. The genesis of the intrusions (conduit-related accumulation or differentiation from stagnant magma) was investigated. The amount of sulphides in the intrusions from Lengshuiqing is one order of magnitude bigger than the sulphides that can be dissolved by a volume of mafic magma similar with the volume of the intrusions. Most intrusions from Lengshuiqing have bulk composition (peridotite ± diorite ± granite) more magnesian (MgO = 21–22%; Mg# > 78) than the deduced composition of their parental magma (MgO = 9–11%; Mg# = 64–67). This indicates the accumulation of sulphide and mafic silicates from a volume of magma much bigger than the volume of the intrusions, which can be explained by the fractionation from magma ascending through the intrusions to shallower depths. A continuous supply and vent of magma is consistent with the lack of chilled margins, the melting of the wall rocks and the generation of high-temperature mineral assemblages (K-feldspar, diopside, and sillimanite) in the Yanbian Group. The intrusions from Lengshuiqing are seen as microchambers on conduits draining olivine-, Cr-spinel-, and sulphide-bearing mafic magma from a larger staging chamber.  相似文献   

18.
Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling.  相似文献   

19.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

20.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号