首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
吴刚  翟松韬  王宇 《岩土力学》2015,36(Z1):351-356
利用LEICA DM4500P偏光显微镜对实时温度作用下山东临沂花岗岩的细观形态进行了观测,结合其在高温下单轴压缩与声发射检测试验结果,对不同温度下花岗岩的强度和声发射与细观结构形态关系进行了初步的探讨。研究表明,高温下花岗岩细观结构形态的变化主要体现在不同温度下裂纹萌生及扩展速度的不同;随温度的升高,花岗岩内部形成的裂纹越多,内部损伤越严重,单轴压缩下其声发射活动越频繁;花岗岩的力学特性及声发射特征与岩样内部裂纹网络的形成具有对应的关系,裂纹扩展缓慢则其峰值应力曲线和振铃累计数曲线走势平稳,而裂纹网络急剧扩展则峰值应力曲线和振铃累计数曲线出现拐点导致突变。通过观测岩石在热作用下内部结构形态的变化,以期推断其在热破裂过程中物理力学特征参量发生变化的原因。  相似文献   

2.
温度是影响岩石物理力学性质的重要因素之一。研究高温对岩石力学性质演变规律及损伤破坏机制的影响,对深部岩体工程具有重要意义。基于PFC颗粒流数值模拟方法,建立了含预制裂纹花岗岩数值模型,模拟了不同温度(20℃,200℃,400℃,600℃,800℃)处理后含预制裂纹花岗岩单轴压缩试验。研究结果表明,含预制裂纹花岗岩的峰值强度和弹性模量随着热处理温度的升高显著降低,而峰值应变呈现增加趋势;不同热处理温度造成的热损伤程度不同,导致预制裂纹花岗岩宏观破坏模式存在差异;热处理温度不超过600℃时,花岗岩均沿着预制裂纹两端发生破坏;当热处理温度达到800℃,热损伤成为花岗岩力学破坏模式的主导因素,且破碎程度显著增加。研究成果有助于了解高温作用下的岩石损伤演化机理,可为深部地下工程提供借鉴。  相似文献   

3.
徐小丽  高峰  张志镇  陈琳 《岩土力学》2015,36(8):2184-2192
为综合考虑温度、加载速率两个因素对花岗岩力学性质及破坏方式的影响,在实时高温(25~1 000 ℃)作用下利用MTS810电液伺服材料试验系统对岩样进行不同加载速率作用下的单轴压缩试验。研究结果表明:(1)各个温度点,岩样单轴压缩应力-应变曲线大致经历了压密、弹性、屈服、破坏4个阶段。岩样峰后曲线在加载速率为0.001~0.01 mm/s出现台阶型分段跌落状,在加载速率为0.01~0.1 mm/s呈现光滑、陡峭的连续曲线。(2)岩样峰值强度、弹性模量随温度的升高可分为4个阶段:25~200 ℃区间为缓慢上升段;200~600 ℃区间为快速下降段;600~800 ℃区间为缓慢上升段;800~ 1 000 ℃区间为平缓下降段。1 000 ℃时的峰值强度和弹性模量相对于25 ℃时分别降低了53.47%和64.34 %。峰值应变与温度呈现三次多项式拟合关系。(3)岩样峰值强度、弹性模量与加载速率对数均呈现二次多项式增长关系,加载速率为0.1 mm/s时的峰值强度和弹性模量相对于0.001 mm/s时分别提高了38.82%和37.22%。岩样峰值应变与加载速率没有明显的对应关系。(4)单轴压缩状态下,随着温度的升高,花岗岩变形破坏形式由拉剪破裂向锥形破裂并伴随向碎性流动过渡,失稳型式由突发失稳向渐进破坏过渡。同一温度状态下,加载速率对岩样的破裂形式没有明显影响,但失稳型式发生了变化。  相似文献   

4.
选择甘肃北山花岗岩为研究对象,利用改进的三点弯曲试验对花岗岩在温度影响下的蠕变断裂特性进行了初步的试验研究,并分析了应力-应变曲线的变化特点, 得到了200 ℃下北山花岗岩蠕变全过程曲线,研究了北山花岗岩断裂韧度随温度的变化规律, 75 ℃时断裂韧度出现极值,在200 ℃以后呈下降趋势。  相似文献   

5.
高温花岗岩遇水冷却后物理力学特性试验研究   总被引:1,自引:0,他引:1  
观察500℃内高温花岗岩遇水冷却后的物理力学特性试验研究和SEM图像发现,高温花岗岩遇水冷却后物理力学特性随温度变化规律,揭示其细观机制。结果表明,(1)高温花岗岩遇水冷却后体积随温度升高而膨胀,而质量和密度随温度升高而减小,500℃时体积增加1.32%,质量减小0.21%,密度减小1.51%;(2)纵波波速和横波波速皆随温度升高而降低,且前者降低幅度大于横波波速的,500℃时分别降低64.9%、46.8%;(3)单轴抗压强度和弹性模量随温度呈减小趋势,500℃时分别减小51.9%、58.6%,温度大于300℃时花岗岩表现出明显的塑性特征;(4)温度大于300℃时花岗岩内部微裂纹数目不断增多,尺寸不断增大,并逐步交叉、贯通形成微裂纹网络,导致高温花岗岩遇水冷却后物理力学性质的劣化。  相似文献   

6.
7.
为了研究花岗岩在不同温度的多次高温-水冷循环作用下物理力学性质的损伤机制及演化规律,通过对花岗岩开展不同温度下高温-水冷循环试验、单轴抗压强度试验、超声波测试试验,分析研究了相关物理力学参数的变化规律,结果表明:(1)在相同温度作用下,随着高温-水冷循环次数的增加导致岩样内部裂隙的萌生和扩展,表现为花岗岩试样质量损失率的逐渐增加,抗压强度和弹性模量先下降、后小幅上升、最后持续下降。(2)在相同高温-水冷循环次数下,随着温度的增加,花岗岩试样的质量损失不断增加,抗压强度与弹性模量呈持续下降趋势。(3)温度对花岗岩的纵波波速影响较大,随着温度的增加,波速快速下降波幅变得不稳定。(4)温度的升高和高温-水冷循环次数的增加都使花岗岩的损伤程度增大,损伤变量增加。(5)随着温度与高温-水冷循环次数的增加,试样逐渐软化,单轴压缩破坏模式从张拉劈裂破坏向锥形剪切破坏过渡,破坏时表面的裂缝数逐渐增加,400℃之后出现树状裂缝并逐渐贯穿整个表面。可见花岗岩的物理力学性质在高温-水冷循环作用后将发生严重的劣化。  相似文献   

8.
高温后花岗岩巴西劈裂抗拉实验及超声特性研究   总被引:1,自引:0,他引:1  
采用非金属超声检测分析仪和液压伺服试验系统装置,研究不同温度(25 ℃~1 000 ℃)作用后花岗岩的超声特性,分析不同温度条件下花岗岩的劈裂抗拉强度。结果表明,(1)高温后花岗岩的纵波波速、超声波形以及劈裂抗拉强度都与温度的变化密切相关;(2)随着温度的增高,花岗岩试样的纵波波速和劈裂抗拉强度逐渐减小,经历1 000 ℃高温后,纵波波速下降90%,劈裂抗拉强度下降65%,并且,纵波波速和抗拉强度间存在一定的相关性;(3)超声波波形随温度升高由整齐变混乱,由密集变稀疏,尤其在800 ℃波形变化最明显;(4)花岗岩试样的热损伤不断增加,经历1 000 ℃热损伤后,试样的脆性增加,变得轻脆易碎。  相似文献   

9.
花岗岩样品高温后损伤的试验研究   总被引:9,自引:0,他引:9  
邱一平  林卓英 《岩土力学》2006,27(6):1005-1010
对河南省某地产25块花岗岩样品进行高温预热处理,测量了加温前后弹性纵波波速,并对样品进行单轴压缩应力-应变全过程试验。通过以上试验,给出如下结果:温度对岩石损伤变化的作用;温度对岩石裂隙密度和损伤应变能释放率的影响。实验结果验证了花岗岩的塑性应变主要与偏斜应力产生的形状改变比能有关,而与体积改变比能的关系不大。  相似文献   

10.
花岗岩热损伤特性研究   总被引:8,自引:2,他引:8  
通过对花岗岩在20 ℃~600 ℃范围内基本力学性质的研究,探讨了弹性模量、单轴抗压强度以及泊松比随温度的变化规律,发现75 ℃和200 ℃分别为花岗岩弹性模量和单轴抗压强度的门槛温度。以弹性模量为研究对象,提出了热损伤的概念,并给出了热损伤本构方程的一般表达式;在Lemaitre损伤模型的基础上,推导了一维TM耦合弹脆性损伤本构方程和损伤能量释放率的表达式;参照经典塑性力学的屈服面理论,引入了温度作用下应力空间中脆性岩石的损伤面模型,定性地讨论了荷载和温度影响下损伤面时的演化规律。  相似文献   

11.
为了研究温度作用下缺陷花岗岩的热损伤问题,以甘肃北山缺陷花岗岩为例,从损伤力学和热力学的角度出发,研究了缺陷花岗岩内部热应力的产生机理,推导出缺陷花岗岩裂纹热损伤的临界应力公式,分析了高温作用对花岗岩热弹性比能变化的影响规律,建立了温度作用下花岗岩热损伤演化方程,并对温度作用下花岗岩应力损伤面可能存在的形态进行了研究。对含缺陷的花岗岩在温度作用下结构内部结构晶体单元损伤、晶体单元损伤应力变化规律进行数值模拟,结果表明:当模拟温度升高到60℃时,花岗岩缺陷裂纹附近出现明显的热损伤,远离缺陷处出现微弱的热损伤;当温度升高到120℃时,花岗岩缺陷处剪切破坏特征明显,裂纹处的热损伤点继续增大,远离缺陷处出现非常明显的不间断损伤点,损伤量、热应力、能量累计数出现了突变;此后,随着温度升高到200℃,损伤增量变化微弱。北山缺陷花岗岩的损伤量和温度之间存在直接的演化关系。  相似文献   

12.
Microscopic Fracture Processes in a Granite   总被引:9,自引:1,他引:9  
Summary The deformation of a competent, brittle, granitic rock is thought to have two main components: elastic and brittle deformation, the latter caused by axial microcracking. Dynamic fatigue testing of Lac du Bonnet granite would, however, suggest the presence of a third mechanism, compaction. Compaction is not the same as elastic crack closure; compaction entails permanent damage along grain boundaries that are under high compression. During compaction, the axial stiffness (elastic modulus) of the rock increases and the permanent crack volume becomes negative (compression). Compaction is active at all stress levels, but it is most noticeable at low stress where its presence is not masked by dilation caused by axial microcracking.  相似文献   

13.
花岗岩体高温热年代学研究的新思路、方法及计算实例   总被引:2,自引:0,他引:2  
对国内外花岗岩体723 对锆石U-Pb 年龄(t Zr)和全岩Rb-Sr 等时线年龄(t Rb)进行的相关分析, 拟合出相关系数很高
(R =0.997), 回归系数接近l 的线性回归方程(t Zr=1.0005×t Rb+0.493041)。 Δt Zr-Rb(t Zr-t Rb)频数统计分析表明: Δt Zr-Rb呈对
称正态分布(偏度系数C SK=0.193; 峰度系数C KU=6.722), 其均值为0.624 Ma, 众数值为1.0 Ma。这表明花岗岩体锆石U-Pb 定
年的测定结果与全岩Rb-Sr 等时线定年测定结果在允许的误差范围内是一致的。不存在花岗岩体锆石U-Pb 年龄必定大于全
岩Rb-Sr 等时线年龄的规律表明,同位素热年代学方法只适用于研究花岗岩结晶固结后的低温热演化史。 前人根据锆石U-Pb
年龄和全岩Rb-Sr 等时线年龄差值及相应同位素体系封闭温度研究的10 个花岗岩体的冷却速率(CR Zr-Rb)表明,它们与岩
体体积尺度不相关,这有悖于“热物体的体积(质量)愈大,则在相同热物理条件下其冷却速率愈小”的热物理学基本定律。
根据热传导理论及本文作者(2010)提出的侵位结晶时差概念我们得出“在相同热物理学条件下,体积尺度是决定花岗岩
体冷却速率最主要因素”的结论。以上述10 个花岗岩体为例,本文计算得出它们在结晶固结前高温阶段的冷却速率(CR ECTD
并拟合出冷却速率与岩体体积尺度呈幂函数关系:CR ECTD=7544.7×D -2.1686, 计算结果符合热物理学基本定律。  相似文献   

14.
漳州地热田基岩裂隙水系统温度分布特征   总被引:1,自引:0,他引:1  
为研究漳州地热田基岩裂隙水系统温度分布特征,建立了新的三维基岩裂隙水系统概念模型,并利用Fluent软件求解模型。结果表明:基岩裂隙热水温度场受到断裂区的强烈控制,在北东—南西向断裂中,强烈对流形成的高温热柱刺穿了基岩顶部形成热田高温中心;基岩热流在断裂区中部高温区达到最大,在北东—南西方向上最大值为343.02mW/m2,在北西—南东方向最大值为368.72mW/m2,并向边缘逐渐降低;第四系孔隙水的存在和运动使得地表热流的最大值和局部值降低。未来漳州热田应加强深部温度的测量研究。  相似文献   

15.
Silicon-bearing rutile has been found in chromitite from the Luobusa (罗布莎) ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2 takes a rutile structure with Si in 6-fold coordination. Thus, high pressures may enhance its solubility in rutile because of possible isovalent exchange in the oetabedral site. In this study, we report new experimental results on SiO2 solubility in rutile up to 23 GPa and 2 000 ℃. Starting materials were mixtures of powdered pure rutile and pure quartz, with compositions of (Ti0.5Si0.5)O2,(Ti0.93Si0.07)O2, and (Ti0.75Si0.25)O2. The mixtures were loaded into either platinum capsules (for a 10/5 assembly) or rhenium capsules (for an 8/3 assembly). The experiments were carried out using multi-anvil high-pressure apparatus with a rhenium resistance heater. Sample temperatures were measured with a W5%Re-W26%Re thermoeouple and were controlled within ±1 ℃ of the set temperature. TiO2-rich and SiO2-rich phases were produced in all the quenched samples. Microprobe analyses of the phases show that the solubility of SiO2 in rutile increases with increasing pressure, from 1.5 wt.% SiO2 at 10 GPa to 3.8 wt.% SiO2 at 23 GPa at a temperature of 1 800 ℃. The solubility also increases with increasing temperature from 0.5 wt.% SiO2 at 1 500 ℃ to 4.5 wt.% SiO2 at 2 000 ℃ at a pressure of 18 GPa. On the other hand, the solubility of TiO2 in coesite or stishovite is very limited, with an average of 0.6 wt.% TiO2 over the experimental P-T ranges. Temperature has a much larger effect on the solubility of SiO2 in rutile than pressure. At high pressure, the melting point of SiO2 is defmitely higher than that of TiO2 and the eutectic point moves towards SiO2 in the TiO2-SiO2 system. Lower oxygen fugacity decreases the solubility of SiO2 in rutile, whereas water has little effect on the solubility. Our experimental data are extremely useful for determining the depth of origin of the SiO2-bearing ruffle found in nature.  相似文献   

16.
高温高压下电解质溶液热力学性质的研究不仅对探讨地球内部流体的作用具有重要意义,而且在很多实际工业过程中也都有广泛应用。本综述了近10年来高温高压下电解质溶液热力学参数的实验测量和理论计算的进展,实验设备还有待进一步的改进和完善,以获得更高温度和压力下的数据,理论计算不仅有待于实验的发展,也与溶液的结构理论密切相关。  相似文献   

17.
This study presents an evaluation of yielding mechanisms for unsaturated, compacted silt using drained triaxial compression tests with control of elevated temperatures and high suction magnitudes. After anisotropic compression, some compacted silt specimens were heated by approximately 40 °C before a suction of approximately 300 MPa was applied, while others were heated after suction application. A frictional response was observed for the specimens sheared under high suction magnitudes, in the form of a consistent increase in peak shear strength with increasing net confining stress. An effective stress analysis was used to evaluate the trends in the peak shear stress and the role of stress history for the different specimens. A single peak failure envelope was observed when the shear strength data was interpreted in terms of the mean effective stress. Changes in preconsolidation stress were estimated by identifying the intersections between a thermo-elasto-plastic yield function and the experimental peak shear strength values. Soil specimens heated before application of high suction values had lower peak shear strengths than reference specimens at high suction and ambient temperature. This behaviour is consistent with thermal softening trends observed in soils heated under low suction values. However, soil specimens heated after suction application had greater peak shear strengths than the reference specimens. This indicates heating under high suction results in hardening. The impact of suction on the preconsolidation stress was found to be better represented by a power law model at high suction magnitudes than other available models. The estimated preconsolidation stress values were used to evaluate the impacts of stress history on the thermal volume change response, which matched well with data from tests on saturated specimens.  相似文献   

18.
针对深井、超深井钻遇的花岗岩地层,通过对花岗岩进行加温后纵波波速测量和常规三轴压缩试验,并基于所得到的试验结果研究不同温度后花岗岩的纵波波速和三轴压缩状态下的宏观力学特性,分析了花岗岩纵波波速、峰值应力、弹性模量、峰值应变与温度的关系;同时对三轴压缩条件下花岗岩的宏观破坏形式进行总结。研究结果表明,经过加温冷却后,花岗岩的纵波波速随着温度的升高呈降低趋势;同时,围压一定时,温度为20~200 ℃时,随着温度的升高,试样的峰值应力、弹性模量、峰值应变呈增大趋势,而在200~400 ℃,这些力学参数呈降低趋势。温度的升高,不仅会使得岩石内部的含水量逐渐减小,而且由于岩石内部矿物成分的热膨胀性不同等因素使得岩石内部产生附加热应力,从而使得岩石内部的初始裂纹发生扩展、贯通或产生新裂纹,进而影响井壁及围岩的稳定性。  相似文献   

19.
The effect of thermal treatment on the dynamic fracture toughness of Laurentian granite (LG) was investigated in this work. Notched semi-circular bend (NSCB) LG specimens are heat treated at temperatures up to 850?°C. The micro-cracks in the rock samples induced by thermal treatment are examined by scanning electron microscope (SEM). The microscopic observations are consistent with the subsequent P-wave velocity measurements, which shows that the P-wave velocity decreases with the treatment temperature monotonically when the temperature is higher than 250?°C. Dynamic fracture toughness measurements are then carried out on these samples with the dynamic load exerted by a modified split Hopkinson pressure bar (SHPB) system. The relationship between fracture toughness and treatment temperature is investigated. Experimental results show that fracture toughness increases with the loading rate but decreases with the treatment temperature. However, when the heating temperature is below 250?°C and above 450?°C, the dependence of dynamic fracture toughness on the temperature is different from other temperatures, which can be explained by the physical processes at the microscopic level of the rock due to heating. At treatment temperatures below 250?°C, the thermal expansion of grains leads to an increase in the toughness of the rock. At treatment temperatures above 450?°C, the sources of weakness such as grain boundaries and phase transition of silicon are depleted, and as a result the decrease in fracture toughness is not as significant as other treatment temperature ranges.  相似文献   

20.
International Journal of Earth Sciences - Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号